




Abstract

It is known that in gold (Au) nanowires, the energy as a function of lattice spacing

exhibits two distinct minima that correspond to fcc and bct phases. These, as well as

other nanowires based on ZnO, Cu, Ni, Al, Ag, can exhibit what is known as shape

memory effects. However, most theoretical and computational results up to date con-

cern infinitely long nanowires. From a computational point of view, studies of finite

length nanowires are more demanding and the development of efficient methodolo-

gies is required for success. In this contribution, our focus is on nanowires of finite

length. We provide details on several computational experiments aimed at the analy-

sis of square-to-rectangle phase transformations in such nanostructures. We base our

considerations on a modification of the coupled system of partial differential equations

for the evolution of displacements and temperature in the structure.

Keywords: phase transformations, nanowires, FVM, POD, biomolecule and entropic

elasticity, nonlocal models and nanostructures.

1 Introduction

Recently, experiments on gold (Au) nanowires demonstrated that they can exhibit

shape memory effects. This has been confirmed computationally with several differ-

ent methodologies, including tight-binding and density functional theory [1]. Shape

memory effects have also been observed in ZnO nanowires as well as in other types

of nanowires that show substantial potential for many applications in nano- and bio-

nanotechnologies, including Cu, Ni, Al, Ag (see, e.g., [2]).

While many results up to date have been obtained for infinitely long nanowires (as

well as for infinitely large nanoplates), including those obtained with ab initio cal-
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culations, the question has remained on whether phase transformations is a generic

phenomenon for the same material-type nanowires of finite length. This question is of

utmost practical importance due to an increasing range of current and potential appli-

cations of nanowire structures. Recently, there has been mounting evidence towards a

positive answer to this question [10]. However, comprehensive studies of nanowires

of finite length are limited due to the fact that the methodologies applied for their stud-

ies are computationally expensive. In addition, there are a number of questions that

remain open at a large extent, including questions related to temperature-dependent

phase stability.

In a series of recent papers we developed several efficient methodologies to solve

2D models describing square-to-rectangle phase transformations in materials with

memory, in particular the finite volume methodology [9] and a numerical reduction

procedure based on the Proper Orthogonal Decomposition (POD) [8]. However, since

the original model here has been simplified, in this contribution we discuss the appli-

cation of a modified procedure which is being applied to the analysis of gold (Au),

iron-based (FePd), and zinc-based oxide(ZnO) nanowires. The results presented here

are for Cu nanowires that have the same length but different diameters. Typical re-

sults for different diameter-length ratios are discussed and observed phenomena are

explained.

2 Free Energy of Square to Rectangular Transforma-

tions

Since our main focus on nanowires, we limit ourselves to the two-dimensional case

where square to rectangle transformations provide a generic counterpart of cubic to

tetragonal as well as tetragonal to orthorhombic transformations. In this case, the free

energy of the system can be represented as follows (e.g. [8]):
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where A2, ai i = 1, . . . , 6, d2, and d3 are the material-specific coefficients, and e1,

e2, e3 are dilatational, deviatoric, and shear components of the strains, respectively,

which are defined as follows:

e1 = (η11 + η22) /
√

2, (2)

e2 = (η11 − η22) /
√

2, (3)

e3 = (η12 + η21) /2. (4)

The Cauchy-Lagrangian strain tensor η is given by its components in the standard

manner with the repeated-index convention used:

ηij = (ui,j + uj,i) /2 (5)
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where ui is the displacement in the ith direction in the coordinate system, ui,x stands

for ∂ui/∂x and similarly for all other variables. x is the coordinates of a material

point in the domain of interest. In this free energy function, the deviatoric strain e2 is

chosen as the order parameter.

3 Governing Equations

In this contribution, we develop a relatively simple and computationally inexpensive

model to study phase transformations in finite nanostructures with our major focus

given here to nanowires of finite length. In the latter case, the models describing

shape memory effects at the mesoscopic level such as those developed in [5, 3, 4]

can be reduced to a 2D case (and in the case of nanowires of infinite length, to the

1D case). Since our interest also lies with the cubic-to-tetragonal transformations, we

consider its 2D analogue, that is the model describes the square-to-rectangle phase

transformations. In particular, our considerations are based on a modification of the

following coupled system of PDEs for the evolution of displacements (u1, u2) and

temperature T [8, 9]:
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for the case of nanowire specific geometry. We discuss the contributions of the surface

stress and in this context analyze the differences in modelling bulk and nanowires.

One of the applications of the nanowires discussed in this contribution stems from

their integration in biomolecular technologies and we highlight the importance of the

contributions of entropic elasticity [6] in such cases. Finally, we provide details on the

extension of the models discussed here to include nonlocal effects allowing to account

for size-dependent properties of the nanostructures [7]. In the above model, T0 is the

reference temperature, cv and d2 are material specific coefficients and other parameters

have been defined in the previous section.

In this initial study, we focus on the mechanical field contributions. A more system-

atic coupling between the mechanical and thermal fields can easily be implemented as

a direct extension of the proposed methodology. In this simplified case, by substituting
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the free energy function into the conservation law of linear momentum, the governing

equations for the dynamics of the system under consideration can be reduced to the

following system:
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where
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Note that although the original model has been substantially simplified, it is still

able to capture some basic features of the system dynamics.

4 Computational Implementation

Since the system has been simplified, it can be solved by the method of lines. The spa-

tial discretization was carried out with the Chebyshev pseudo-spectral methodology

supplemented by the Chebyshev-Lobatto quadrature rule. In particular, in the longitu-

dinal direction with the boundaries of the computational domain denoted by za and zb

we choose a set of Chebyshev points {zi} as follows:

zi = (zb − za)

(

1 + cos

(

πi

N

))

/2 + za, i = 0, 1, . . . , N, (14)

where N + 1 is the number of nodes chosen for the approximation. Based on these

nodes, our approximations can be represented by the the following linear approxima-

tions:

µ(z) =
N

∑

i=0

µiφi(z), (15)

where µ(z) is the corresponding component of the displacement function and µi is the

function value at zi, while φi(z) is the ith interpolating polynomial associated with zi

which has the following property:

φi(zj) =

{

1, i = j,
0, i 6= j.

(16)
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We note that if we have µ(z) approximately, the derivative ∂µ(z)/∂z can be easily

obtained by taking the derivative of the basis functions φi(z) with respect to z:

∂µ
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N
∑

i=0
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∂z
. (17)

This allows us to reduce the problem to a matrix form

M z = DM , (18)

with matrix D determined by its elements as follows:
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where

ci =

{

2, i = 0, N,

1, otherwise.
(20)

As already mentioned, we use the Chebyshev-Lobatto formulae for our quadrature

rules in computing numerically the associated integrals. This was followed by the

domain decomposition method as explained in Section 5. The resulting system, along

with corresponding boundary conditions, has been reduced to a system of differential-

algebraic equations which is solved with the second order backward differentiation

formula:

M

(

3

2
X

n − 2X
n−1 +

1

2
X

n−2

)

+ ∆tN (tn,Xn,V(tn)) = 0, (21)

where n denotes the current computational time layer. For each computational time

layer, iterations have been carried out by using Newton’s method.

We also confirmed our results with a finite element implementation.

5 Numerical Results

In what follows we report several preliminary results on modelling a Cu nanowire.

In our experiments, we fix the length of the nanowire at 1 µm and looked at the

initial stage of microstructure formation by using a coarse-grained model developed

in Section 3, varying the diameter of the nanowire.
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The computational parameters we used for all the computations reported in this

contribution are given by:

a2 = 4.80 × 107kg/s2mK, a4 = 6 × 1011kg/s2m, a6 = 4.5 × 1013kg/s2m,

k = k1a1, a1 = 3.0 × 107kg/s2m, a3 = 6.0 × 107kg/s2m.

The applied forces were set as fx = 7 × 104, f2 = 0 and the boundary conditions

were fixed (in particular, u1 = u2 = 0 were set on all boundaries).

In Fig. 1 we present the results obtained with the methodology described in the

previous section where the entire nanowire was divided into two areas, corresponding

to the “martensite plus” with e2 ≈ 0.12 and the “martensite minus” with e2 ≈ −0.12.

The width of the nanowire in this case was 150 nm.

Figure 1: Initial stage of microstructure formation in the nanowire of 150 nm width

and k1 = 10.

In Fig. 2 and 3 we present the initial pattern formation for nanowires of smaller

width, in particular with width of 100nm and 80 nm, respectively. We observe that

for all these cases the initial pattern formation is propagating towards the longitudinal

boundaries of the structure, decaying with decrease in the nanowire width.

As Fig. 4 demonstrates that the above observation remains true even after decreas-

ing the width of the nanowire to 50 nm.
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Figure 2: Initial stage of microstructure formation in the nanowire of 100 nm width

and k1 = 10.

The explanation of this phenomenon lies with the effect of surface energy.

In order to demonstrate it, we increased the value of coefficient k1 from 10 to 1000

and carried out computations again for a nanowire of width 100nm. We observe that

in this case, surface energy suppresses the pattern formation.

6 Conclusion

In this paper, we proposed a simplified two-dimensional model for studying finite

length nanowires that may exhibit square to rectangle phase transformations. The

model has been implemented by using the Chebyshev pseudo-spectral methodology

combined with the domain decomposition method and second order backward dif-

ferentiation. Based on this implementation we analyzed Cu nanowires with different

diameter-length ratio. Our preliminary results indicated that for the range of diameter-

length ratio studied here the initial pattern formation propagates towards the longitu-

dinal boundaries of the structure when the nanowire width decreases. We provided an

explanation of this phenomenon confirming that in all cases considered here surface

energy suppresses the pattern formation.
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Figure 3: Initial stage of microstructure formation in the nanowire of 80 nm width and

k1 = 10.
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