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Abstract: The dynamic analysis of semi-flexible polymers, such as DNA molecules, is an important multiscale problem with a wide 
range of applications in science and bioengineering. In this contribution, a dumbbell model with internal viscosity was studied in 
steady shear flows of polymeric fluid. The tensors with moments other than second moment were approximated in the terms of 
second moment tensor. Then, the nonlinear algebraic equation of the second moment conformation tensor was calculated in closed 
form. Finally, substituting the resulting conformation tensor into the Kramers equation of Hookean spring force, the constitutive 
equations were obtained. The shear material properties were discussed for different internal viscosities and compared with the results 
of Brownian dynamics simulation. 
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1 Introduction 
 

The dynamics of polymeric fluids is an important 
multiple time scale problem, which involves quick speed 
of small solvent molecules, fast movement of atomic 
particles that constitute the polymers and slow 
orientation of the polymer deformation[1]. The simplest, 
albeit useful in applications, model for polymer solutions 
is the Hookean dumbbell model proposed by KUHN[2], 
where a polymer molecule in dilute solution is modeled 
by two beads connected by a spring force. The 
mathematical simplification of this model has 
contributed a lot to developing constitutive equations and 
investigating solution of polymer fluid dynamics 
problems[1ī3]. To match the empirical results, a few 
additions have been incorporated into the standard 
dumbbell model. Finitely extensible nonlinear elastic 
(FENE) property and internal viscosity of the spring are 
among them. For both cases, the governing equations of 
conformation tensors are nonlinear and have no closed 
form solutions without approximations. 

Brownian dynamic simulation has been used widely 
in the computation of the governing equation for FENE 
dumbbell model. Generally speaking, it can lead to 
accurate results compared to the approximate theoretical 

method[4ī6]. Brownian dynamic simulation is not a good 
method to explain the physical properties. On the other 
hand, simulation is sometimes time consuming. 
Analytical method makes the explanation of the physical 
phenomena more straightforward. Some closure forms of 
the conformation tensor equation make the governing 
equation analytically solvable. YANG and MELNIK 
proposed an approximation scheme to solve the 
governing equation for polymeric fluids for dumbbell 
model with internal viscosity[7ī8]. 

In this paper, the approximation scheme was used to 
explain the dynamics of the polymeric fluid in shear 
flows. Based on the analytical solutions, the material 
properties of the polymeric fluid in steady-state shear 
flow were discussed. The shear shinning phenomenon 
was found and the results were compared with those 
obtained by Brownian dynamics simulation. The 
contribution of the internal viscosity was also analyzed 
with the presented numerical examples. 
 
2 Constitutive model 
 

The polymers of bead-spring-bead dumbbell model 
in a Newtonian solvent with viscosity s are presumed 
that there is no interaction between the beads. Let  
denote the viscous drag coefficient due to the resistance 
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of the flow. For the dumbbell model with internal 
viscosity(IV), the spring force is a function of the 
configuration vector and configuration velocity. A force 
law can be expressed in the following form: 
 

QQQQQQF ⊗+= 2) ,(
Q

KH                   (1) 

 
where  Q  is the length of vector Q,  H is the spring 
coefficient of the dumbbell model and K is a constant 
denoting the measurement of the IV. The dot means 
differentiation with respect to time. Substituting Eqn.(1) 
and the equation of motion of one bead into the 
continuity equation yields diffusion equation[3] 
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where   is the configuration distribution function of Q, 

 is unit matrix; g=2 /(1+2 ) and  is the relative internal 
viscosity, =K/ , which ranges from zero to infinity. For 
g=0, Eqn.(2) recovers the form of the diffusion equation 
for Hookean dumbbells without IV. 

The second moment conformation tensor <Q⊗Q> is 
of the most interest when calculating the stress tensor. 
The governing equation of conformation tensor can be 
developed by multiplying the diffusion equation by the 
dyadic product Q⊗Q and integrating over the entire 
configuration space: 
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The subscript (1) denotes convected derivative. We 

can not calculate the second moment tensor <Q⊗Q> 
because there are other moment terms, e.g. <(Q⊗Q)/Q2> 
and <Q⊗Q⊗Q⊗Q>. In order to put the governing 
equation into solvable form, the high order terms can be 
approximated as follows: 
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These two equations are key approximations to 

make the governing equation analytically solvable. 
Eqn.(6) is similar to the Perterlin approximation used in 

FENE dumbbell model. Using the approximation 
Eqns.(4) and (5), we cast the governing Eqn.(3) into: 
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Eqn.(6) is a nonlinear algebraic equation of <Q⊗Q> 

if all the time-dependent terms are neglected in the 
steady state flow case. In the next section, we will seek a 
closed form solution to this governing equation, followed 
by the material properties discussion in the case of steady 
state shear flow. 
 
3 Results and examples 
 
3.1 Material coefficients in closed form 

Now we consider the steady state shear flow with 
velocity vector 
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where  γ  is the shear rate. The transpose of velocity 
vector gradient is  

=∇=
000
000
00

)( T
γ

v                        (8) 

 
The average value of the square of the end-to-end 

distance in equilibrium for the Hookean dumbbell model 
in shear flow with shear rate γ  is  
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where  H is the time constant, H= /(4H). For conveni- 
ence, we introduce notation for the conformation tensor  
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and its convected differentiation in steady state 
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Substituting Eqns.(7)ī(11) into Eqn.(6) yields  
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For convenience, we can use the Kramers equation 
of stress tensor for spring model 
 

QQ nkTnHp +⊗−=τ                      (13) 
 

In this model, the stress tensor does depend on the 
internal viscosity force as indicated by 
WEDGEWOOD[9]. Substituting Eqns.(10) into (13), we 
obtain the stress tensor for spring model 
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If we let g=0 in Eqns.(14ī16), the material 

properties of linear Hookean dumbbell model for shear 
flow case can be recovered. 
 
3.2 Examples 

According to Eqns.(14ī16), we can calculate the 
material properties for different internal viscosities. Fig.1 
demonstrates the comparison between our approximate 
solutions with Brownian dynamics simulation data where 
the internal viscosity g=0.1 is chosen[9]. In Fig.1, the 
solid lines denote our approximate results for the 
material coefficients and the asterisks denote the data 
obtained by Brownian dynamics simulation. For both 
viscosity and first-normal stress coefficients, we have 
 

 
Fig.1 Comparison analytical results with Brownian dynamics 
simulation: (a) Viscosity coefficient; (b) First-normal stress 
coefficient 

demonstrated good agreements. 
With the increase of the shear rates, the material 

coefficients decrease substantially, which is the 
characteristic of shear thinning. This phenomenon 
demonstrated in the comparison plots verifies the 
efficiency of the approximation method which we 
proposed in this contribution. The contributions of the 
internal viscosity have been presented for the three 
material properties, illustrated in Fig.2. It can be 
concluded that the internal viscosity explains the pheno- 
menon of shear thinning and higher internal viscosity  
 

 
Fig.2 Contribution of IV: (a) Viscosity coefficient; (b) First- 
normal stress coefficient; (c) Second-normal stress coefficient 
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makes stronger shear thinning. This phenomenon has 
been found by WEDGEWOOD and others using the 
integration method. 
 
4 Conclusions 
 

1) A set of approximated analytical solutions for the 
dumbbell model with internal viscosity without 
integration of the Gaussian distribution nor any 
numerical computation are proposed. 

2) Concise equations in this study can predict the 
material coefficients of the complex flow qualitatively 
and rather quantitatively, and the shear thinning 
phenomena are described well with the results deduced 
from the dumbbell model with internal viscosity. 
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