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Abstract
The main idea proposed in this paper is that in a

vertically aligned array of short carbon nanotubes (CNTs)
grown on a metal substrate, we consider a frequency
dependent electric field, so that the mode-specific prop-
agation of phonons, in correspondence with the strained
band structure and the dispersion curves, take place. We
perform theoretical calculations to validate this idea with
a view of optimizing the field emission behavior of the
CNT array. This is the first approach of its kind, and is
in contrast to the the conventional approach where a DC
bias voltage is applied in order to observe field emission.
A first set of experimental results presented in this paper
gives a clear indication that phonon-assisted control of field
emission current in CNT based thin film diode is possible.

Keywords: Field emission, carbon nanotube, electrodynamics,
hydrodynamics, phonon, dispersion.

I. INTRODUCTION

In order to understand the electron-electron interactions
and electron-phonon interactions in carbon nanotubes (CNTs),
the study of collective excitations is very important. For
mathematical modeling of the complex dynamics during field
emission from CNTs in the form of a thin film, the deformation
of the CNTs and the related couping with the electrodynamics
should be taken into account. Under the continuum type as-
sumption for the CNTs as elastic nano-wire, the displacement
can be decomposed into two parts: one is the displacement
due to electromechanical forces in the slow scale (i.e., due to
conduction current induced force under electrostatic potential
etc.), and the other is the displacement due to fluctuation of
the CNT sheet due to electron flow in the CNT and ballistic
transport of electron from the tip to the anode. The displace-
ment due to electromechanical forces has been modeled by
these authors (see Ref. [1], [2] for details). The focus of this
paper is to extend the previously developed model to include
the deformation due to the fluctuation of the CNT sheet under
electron flow. In this paper, we develop a systematic approach,
starting from the unit cell of a generally oriented CNT to the
interacting array of CNTs under realistic quantum-mechanical
boundary conditions. A hydrodynamic model with mechanical
coupling is used to model the CNTs, which assumes a thin
layer of electron gas at the surface of the CNTs. Theoretical
and experimental studies on quantum thermal transport suggest

that the electronic transport (and hence the field emission
current) is coupled with the thermal transport [3]. Therefore,
thermodynamics of electron-phonon interaction has also been
considered. Expressions for dispersion relations are obtained
by solving all the governing equations simultaneously.

II. MODEL FORMULATION

The surface electron density of CNTs (ñ) can be decom-
posed into a steady (unstrained) part (ñ0) and a fluctuating
part (ñ0). Therefore, ñ = ñ0 + ñ1, where the steady part ñ0 is
the surface electron density corresponding to the Fermi level
energy in the unstrained CNT, and it can be approximated as
in [4] ñ0 = kT

πb2Δ , where k is Boltzmann’s constant, T is
the temperature, b is the interatomic distance and Δ is the
overlap integral (≈ 2eV for carbon). The fluctuating part ñ1

is inhomogeneous along the length of the CNTs. Actually, ñ1

should be coupled nonlinearly with the deformation and the
electromagnetic field [5]. However, in a simplified form, ñ1

is primarily governed by one of the quantum-hydrodynamic
equations, which will be illustrated later in this paper. The
displacement of CNTs during field emission is the combined
effect of the electromechanical forces in the slow time scale
and the fluctuation of the CNT sheet due to electron flow in
the fast time scale. Therefore, the total displacement vector
utotal can be expressed as

utotal = u
(1) + u

(2) , (1)

where u
(1) and u

(2) are the displacement vectors due to
electromechanical forces and fluctuation of the CNT sheet,
respectively. The elements of displacement vector in the co-
ordinate system (x′, z′) can be written as

u
(1) =

{
u

(1)
x′

u
(1)
z′

}
, u

(2) =

{
u

(2)
s

u
(2)
z′

}
, (2)

where ux′ is the lateral displacement and uz′ is the longitu-
dinal displacement. The displacement u

(1), which is defined
in the slow time scale, is calculated using the methodol-
ogy previously developed by the authors [2]. To determine
the displacement in the fast time scale (u(2)), a quantum-
hydrodynamic formalism is used, which is discussed next.

1) Quantum-hydrodynamic formalism: In this study, fol-
lowing assumptions have been made for the quantum-
hydrodynamic formalism:
(i) CNTs deform due to electrodynamic forces, thus chang-

ing the atomic coordinates leading to change in energy
band structure;
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(ii) The valence electrons flow as uniformly distributed
electron gas over the cylindrical surface; and

(iii) An electromagnetic wave propagates along the CNT axis
and perturbs the homogeneous electron gas density.

By combining the continuity equation and the momentum
conservation equation (that contains u

(2)), the hydrodynamic
model for electron density on the CNT surface can be ex-
pressed as

∂2ñ1

∂t2
−
eñ0

me

∂Ez′

∂z′
−α

∂2ñ1

∂z′2
+β

∂4ñ1

∂z′4
+
β

r2
∂2

∂z′2

(
∂2ñ1

∂θ20

)
+
n0

me

∂flz′

∂z′
−
eñ0

me

1

r

∂Eθ0

∂θ0
−
α

r2
∂2ñ1

∂θ20
+
β

r4
∂4ñ1

∂θ40
+
β

r2
∂2

∂θ20(
∂2ñ1

∂z′2

)
+
n0

me

1

r

∂flθ0

∂θ0
−
en0

me

∂Er

∂r
+
n0

me

∂flr

∂r
= 0 , (3)

where e is the electronic charge (positive), me is the mass
of the electron, α is the speed of propagation of density
disturbances, β is the single electron excitation in the electron
gas, fl is the Lorentz force, fp is the ponderomotive force,
and Ez′ , Eθ0

and Er are the axial, circumferential and out-
of-plane components of the electromagnetic field, respec-
tively. The effect of temperature on ñ is not directly taken
into consideration. Instead, the thermodynamics of electron-
phonon interaction is modeled separately later in a decoupled
manner through quantum thermal conductance. In order to
introduce coupling between the quantum fluctuation and the
eletromagnetic field, we consider the Maxwell’s equations in
general form, which is combined to the following form:

∇2E − μσ
∂E

∂t
− με

∂2E

∂t2
= μ

∂J

∂t
, (4)

where μ, σ, ε, and J are permeability, conductivity, permittiv-
ity, and current density, respectively. Magnetic field fluctuation
is neglected for simplicity. In the present case, the current
density in the CNT sheet is given by J = eñ∂u

(2)
z′ /∂t.

Therefore, by simplifying Eq. (4) further, one can obtain the
equations in (z′, θ0, r) coordinate system as

∂2Ez′(r)

∂z′2
+

1

r2
∂2Ez′(r)

∂θ20
+

1

r

∂

∂r

(
r
∂Ez′(r)

∂r

)
− μσ

∂Ez′(r)

∂t

−με
∂2Ez′(r)

∂t2
= μ

∂
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(
eñ
∂u

(2)
z′

∂t

)
, (5)

∂2Eθ0
(r)

∂z′2
+

1

r2
∂2Eθ0

(r)
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+

1

r

∂
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(
r
∂Eθ0

(r)
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−με
∂2Eθ0

(r)
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= 0 , (6)

∂2Er(r)

∂z′2
+

1

r2
∂2Er(r)

∂θ20
+

1

r

∂

∂r

(
r
∂Er(r)

∂r
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− μσ
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−με
∂2Er(r)
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= 0 , (7)

2) Thermodynamics of electron-phonon interaction: In or-
der to arrive at the governing equation in temperature T (z′)
(assuming the CNTs to be one-dimensional elastic nano-wire),
a diffusive heat transport model in the ballistic regime is used
to analyze the temperature rise in different CNTs in our present
problem. In the ballistic regime, the heat flux carried by the
phonons can be obtained by integrating the non-equilibrium
phonon distribution associated with several phonon modes.
Further simplification of this integral based on the analogy
with the Landauer formula for ballistic conduction of electron
leads to an approximate thermal conductance quantum kQ =
πk2T/(6�). This temperature dependent thermal conductance
is employed to derive the heat transport equation. By consider-
ing the Fourier heat conduction and thermal radiation from the
surface of CNT, the heat transport equation using the energy
rate balance principle can be written as

dQ−
πd2

t

4
dqF − πdtσSB(T 4 − T 4

0 )dz′ = βink
∂T

∂t
, (8)

where dQ is the heat flux due to Joule heating, dt is the
diameter of the CNT, qF is the Fourier heat conduction (qF =
−kQ∇T ), σSB is the Stefan-Boltzmann constant and βin is a
constant. By dropping the non-linear terms as a simplification,
Eq. (8) can be written as

−kQ

∂2T

∂z′2
= βink

∂T

∂t
. (9)

Solution branches of this equation couped with the temperature
dependent charge density (derived next) represents the thermal
phonon mode.
3) Computation of output current: The average conduction

electron density (ñCNT
av ) for a particular energy band i can be

calculated by using the following relation:

ñCNT
av =

R∑
i=1

f i(EFL, Ei, T )|ψi|
2 , (10)

where R is the total number of conduction bands, EFL is
Fermi level energy, E is the energy state and ψ is the wave
function. The function f i(EFL, Ei, T ) is expressed as

R∑
i=1

f i(EFL, Ei, T ) =
1

1 + exp
(

EFL−Ei

kT

) , (11)

and this is the function which couples the quantum thermal
conductance in Eq. (9) to the fluctuation of the CNT sheet
and the related mechanics in the fast time scale. To obtain the
energy state E, we solve the k.p band structure problem

Hcψ = Ecψ , (12)

where the superscript c denotes the conduction band and H is
the total Hamiltonian, which is expressed as

H = ∇
�

2

2m∗
∇+H(ε) + e(V + φ) , (13)

where m∗ is effective mass, ε is the longitudinal strain (in-
cluding thermal strain), V is the DC bias voltage and φ is the
fluctuating in the electrical potential due to Maxwellian elec-
tromagnetics. Assuming the CNTs as one-dimensional elastic
nano-wire (as in an Euler-Bernoulli beam) and subjected to
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small strain and small curvature, the longitudinal strain can
be written as

εzz =
∂u

(m)
z′0

∂z′
− r(m) ∂

2u
(m)
x′

∂z′2
+ αΔT (z′) , (14)

where the superscript (m) indicates the mth wall of the
MWNT with r(m) as its radius and uz′0 as the displacement of
the center of the cylindrical cross-section, ΔT (z′) = T (z′)−
T0 is the difference between the absolute temperature (T )
during field emission and a reference temperature (T0) and α
is the effective coefficient of thermal expansion (longitudinal).
The axial strain εzz is related to the bond elongation during
field emission. For example, the relation between the axial
strain and the bond elongation for an armchair nanotube is
expressed as [6]

εzz =
Δa1 sin(α/2) + a1

2 cos(α/2)Δα

a1 sin(α/2)
, (15)

where a1 is the bond length, α is the bond angle, Δa1 is the
bond elongation and Δα is the bond angle variance.
The electrostatic potential (V ) is calculated using Greens’

function approach [7]; that is,

V (z) = −eVs − e(Vd − Vs)
z − z0
L− z0

+
∑

j

G(i, j)(nj −N) ,

(16)
where Vs is the source potential, Vd is the drain potential, L
is the length of the CNT, (i, j) are rings on different sections
of CNT and N is denotes chirality in a (N, 0) CNT. This
potential changes slowly, depending on the globally deformed
shape of the CNTs for a given condition of the thin film.
In Eq. (5), the fluctuating part of the electrical field is given

by Ez′ = −∂φ/∂z′. By using Eq. (12)-(16), the energy state
E is calculated. The value of E is plugged in Eq. (10) to
obtain the fluctuating electron density ñCNT

av . By summing up
the current density contribution from all the CNT tips within
a volume element of the thin film, the total electron density
(ñi′

total) is determined. Finally, the field emission current (I)
in the anode is estimated as

I =

S∑
i′=1

ñi′

totalΔA , (17)

where S is the total number of CNTs in the volume element
and ΔA is the area of the anode.

III. RESULTS AND DISCUSSIONS

In the theoretical model of the electron-phonon interaction,
we have eight partial differential equations, as discussed above.
The variables here are {T ñ1 u

(2)
z′ u

(2)
r u

(2)
θ0 Ez′ Er Eθ0}. By

applying Fourier transform from time domain to frequency
domain and assuming periodic field distribution in terms of the
wavevectors, and by substituing them into the eight governing
equations, we get the dispersion equation. Fig. 1 shows the
frequencies for various values of the CNT radius. The circles
shows the frequencies (ωk) at which there will be uniform flow
of conduction electrons, that is for the zero waveneumebrs:
qk = 0, mk = 0, where

ñ =
∑

k

˜̃n1k
ej(mkθ0+qkz′

−ωkt) , (18)
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Fig. 1. Frequencies for zero longitudinal wavenumber and zero radial
wavenumber and for various values of the CNT radius.

and similar transformation for the other variables hold. In
Fig. 1, the dots indicate the various values of the frequencies
at the which the acoustic phonons and the thermal phonons
cease to exist; that is, at these frequencies the couples phonon
modes are degenerate and the resulting effect is the same as in
a ideal cylindrical CNT with no fluctuation in the CNT sheet.

In this paper, we report the first set of experimental results,
wherein the field emission current has been measured for
various AC frequencies at 600V of bias DC voltage across
the CNT substrate and the anode. The thin film sample has
vertically aligned CNTs with average height of 12 μm and 200
nm diameter. Figure 2 shows the field emission current history
(thin lines) and the applied AC voltage history (solid line) at
frequency of 10HZ. The field emission current is obtained for
a steady-state oscillation of voltage with amplitude of 600V.
A drop in the resistivity can be seen at the peak voltage,
whereas at the minimum voltage, the field current is fluctuation
dominated. Figure 3 shows the variation in the maximum field
emission current obtained for 600V DC voltage as we vary the
frequencies. Due to frequency limitation in the high voltage
power supply, the present experiments have been restricted to
60Hz frequency. From Fig. 3, it seen that the field emission
current drops by approximate 10 μA as the applied voltage is
changed from 600V DC to 600V AC at 2 Hz. However, an
amplification of field emission current at about 40Hz (voltage
is kept at 600V) can be seen. Although a very low frequency as
compared to the ballistic transport regime (see the frequency
range in Fig. 1), the frequency variation seen in Fig. 3 is
essentially an indication that phonon-assisted control of field
emission current in CNT film device is possible.

IV. CONCLUSIONS

In this paper, we have developed a computational model to
optimize the field emission behavior of a carbon nanotube thin
film by applying a frequency dependent electric field. The idea
behind the individual phonon mode excitation under AC field
is that this will help in validating the overall model dynamics
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Fig. 2. Field emission current history for applied AC voltage at 600V and
10 Hz. Voltage history is shown by thick solid line.
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Fig. 3. Variation in the field emission current amplitude for various
frequencies of applied AC voltage. Applied AC voltage amplitude is 600V
for all the frequencies.

and in shaping the field emission versus time response. A
first set of experimental results presented in this paper gives a
clear indication that phonon-assisted control of field emission
current in CNT based thin film diode is possible.
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