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Abstract.
It is well known that the origin of one type of spurious solutions in multiband k·p theory is the failure to restrict the

Fourier coefficients of the envelope functions to the first Brillouin zone. Often, the set of differential equations obtained
is supplemented with interfacial boundary conditions derived by integrating the differential equations across the interface;
however, this leads to a mathematically ill-posed problem as the envelope functions cannot simultaneously fulfill these
boundary conditions and the requirement that the Fourier coefficients be restricted to the first Brillouin zone. We show, by
way of an example, the origin of these spurious solutions and how to remove them.
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EXACT ENVELOPE FUNCTION
THEORY

The origin of certain spurious solutions can be found in
the exact envelope function theory developed by Burt
[1]. The starting point for this theory is the one-electron
Schrödinger equation:

[
− h̄2

2m
∆ +V

]
ψ = Eψ , (1)

where h̄ is Planck’s constant divided by 2π , m is the mass
of the electron, ∆ is the Laplacian and V is a potential,
e.g., the crystal potential. The central step is to make an
envelope-function expansion:

ψ(~r) = ∑
n

Fn(~r)Un(~r), (2)

where the Fourier expansion of Fn is restricted to the first
Brillouin zone. We will see that it is the failure to restrict
the envelope functions to the first Brillouin zone which
is the origin of these spurious solutions. Based on this
expansion and using certain approximations, multiband
models can derived. In this paper we study the two-band
model.

Two-Band Model without Restriction
The differential equations for the two-band model

(conduction band + light hole) are given by:
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(3)
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FIGURE 1. Left, conduction-band envelope function. Right,
Fourier coefficients of the conduction-band envelope function.

where mc (mlh) is the conduction-band (light-hole) ef-
fective mass, Vc (Vv) is the conduction-band (valence-

band) edge (all are step functions), P =
√

h̄2Ep/(2m),
Ep is the Kane energy, and m is the free-electron mass.

We have solved this set of PDE’s for an InAs/GaAs
quantum-well system (material parameters are taken
from Vurgaftman et al. [3]) without taking into account
that the envelope functions should be restriced to the
first Brillouin zone. We find that there are non-physical
solutions (spurious solutions), e.g., the solution shown
in Fig. 1 which has an energy located in the bandgap
(E =−0.259eV).

We see that this solution has considerable contribu-
tions outside the first Brillouin zone (inside black lines)
and a similar behaviour is observed for all the other spu-
rious solutions.

Two-Band Model with Restriction

The way to eliminate spurious solutions is to work in
Fourier space and there to restrict the solution to the first
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FIGURE 2. Left, the spectrum resulting from solving the
differential equations. Right, the spectrum when the solutions
are restricted to the first Brillouin zone.
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FIGURE 3. Left, the conduction-band envelope function
(F1). Right, the Fourier coefficients in the first Brillouin zone.

Brillouin zone, i.e., the so called cut-off method [2]. This
is clearly seen from the two spectra shown in Fig. 2.

We see that all solutions located in the bandgap are
removed by restricting the envelope functions to the first
Brillouin zone and by inspection it is found that the
solutions left are well-behaved in the sense that they are
slowly varying (the central assumption in k · p theory).
For example, the conduction-band ground state is shown
in Fig. 3.

This clearly demonstrates that we can remove the spu-
rious solutions by restricting the envelope functions to
the first Brillouin zone.

INTERFACIAL BOUNDARY
CONDITIONS

As many have pointed out, it appears to be inconsistent
to use stepwise constant material parameters and at the
same time restrict the envelope functions to the first Bril-
louin zone. This is seen from the fact that the envelope
functions need out-of-zone contributions in order to sat-
isfy boundary conditions at interfaces (found by integrat-
ing across the interface). One way to resolve this problem
is to derive a reduced set of interfacial boundary condi-
tions, see e.g., Rodina et al. [4]. It is important to note
that spurious solutions are not removed by choosing ap-
propriate boundary conditions, they are removed by re-
stricting the envelope functions to the first Brillouin zone
(see section the next section).

We would like to point out that it is the approximation
that the material parameters are constant in each material
which creates the apparent inconsistency and that by

working in Fourier space there is no inconsistency as
interfacial boundary conditions are not needed in this
case because of the restriction to the first Brillouin zone.

Two-Band Model with Smooth Step
Functions

To highlight that choosing the “right” interfacial
boundary conditions do not remove the spurious solu-
tions, we present results based on the two-band model
where instead of using abrupt step functions we use the
smooth step function given by:

S(x) =
tanh(a(x + b)) tanh(a(−x + b)) + 1

2
, (4)

where a controls how abrupt the step function is and b
is the position of the interface (symmetric around 0).
Solving the two-band model using a = 2.5 nm−1 and
b = 5 nm we find that the ground state is well captured,
however, we still find spurious solutions including states
in the energy gap.

This clearly demonstrates that it is not the interfacial
boundary conditions which creates the spurious solutions
as interfacial boundary conditions are superfluous in this
case as all material parameters are everywhere continu-
ous.

CONCLUSION

We have shown the origin of one type of spurious solu-
tions and how to remove them using the cut-off method.
In addition, we have pointed out that it is the approxi-
mation of stepwise constant material parameters which
is the origin of the ill-posedness in connection with
boundary conditions and shown that choosing the “right”
boundary conditions do not remove the spurious solu-
tions.
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