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MODELLING THE EFFECT OF SURGICAL STRESS
AND BACTERIAL GROWTH IN HUMAN CORNEA

D. ROY MAHAPATRA AND R. V. N. MELNIK

This paper reports a mathematical model and finite-element simulation of the dynamic
piezoelectricity in human cornea including the effect of dehydration and stress generated
due to incision and bacterial growth. A constitutive model is proposed for the numeri-
cal characterization of cornea based on the available experimental data. The constitutive
model is then employed to derive the conservation law for the dynamic piezoelectric-
ity supplemented by the time-dependent equation for the electromagnetic field. The re-
sulting system of partial differential equations is solved numerically with finite-element
methodology. Numerical results presented here demonstrate promising applications of
the developed model in aiding refractive surgery and a better understanding of regenera-
tive processes in cornea.

Copyright © 2006 D. R. Mahapatra and R. V. N. Melnik. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Cornea is one of the most delicate and active tissue systems in human and several other
species. Any major change in the equilibrium stress in the sclera and cornea due to in-
cision, excessive swelling, and bacterial growth can cause deterioration of the refractive
performance of the cornea. Cornea consists of a complex architecture of the collagen fib-
rils dispersed in the matrix containing proteoglycans. The anisotropic structure of this
composite system is distributed over the stromal layer. Computer models for surgical aid
in the past had been developed, these models neglected the effect of complex tissue archi-
tecture and the resulting constitutive behavior in the long-term tissue remodelling. The
role of these factors in context of surgical procedures has been brought into focus only
recently and mathematical model has been proposed (see [6]).

Apart from the collagen orientation-dependent anisotropy in cornea, it may be noted
that the dynamic nature of the refractive property, which is very little understood in the
case of cornea as compared to the sclera, is dependent on the electrical permittivity,
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magnetic permeability, and the piezoelectric constants of the cell-matrix composition.
Complication arises because of the piezoelectricity of collagen tissue. Mechanics of colla-
gen tissue in corneal fibroblast has been studied extensively by several researchers. Petroll
et al. [5] studied the correlation between the movement of cell-matrix adhesion sites
and the force generation in corneal fibroblasts. A detailed discussion of the mechanism
of cell-regulated collagen tissue remodelling in stromal fibroblasts can be found in the
work of Girard et al. [3]. The experimental studies indicate a strong influence of stress-
induced charge transport on the site-specific remodelling of the collagen structure in
cornea. The resulting piezoelectricity is due to anisotropy of the collagen lattice [2, 8]. In
cornea, stroma is the basic collagen fibril structure over which the extrafibrilar matrix is
found with significant anisotropy. The cell-matrix adhesion is mainly controlled by the
cross-linking agent (proteoglycans) which are negatively charged. The complex structure
transforms or breaks down due to change in the concentration of H2O. Thus, the state
of hydration and the anisotropy of collagen fibrils are two interlinked and important fac-
tors that affect the piezoelectric property and hence the long-term tissue remodelling in
cornea under various environmental and surgical conditions. As a fundamental cause
of piezoelectricity, the structural transformation in collagen during dehydration was re-
ported by Pratzl and Daxer [7]. Although mathematical models for characterizing the
collagen structure, as observed in the X-ray diffraction results, have been reported re-
cently by Pinsky et al. [6], not many mathematical modelling studies are found in the
literature which can be applied to characterize the influence of piezoelectricity on the
delicate dynamic activity in cornea. Furthermore, it is highly desirable to incorporate the
residual stress generation into new mathematical models when analyzing the bacterial
growth-induced effects on the cornea.

Experimental studies of the influence of the directional effect of the collagen structure
in human cornea have been carried out in the work of Jayasuriya et al. [4]. These stud-
ies show a significant influence of the orientation of the collagen fibers on the stiffness
and the piezoelectric coefficients of the cell-matrix composition. Furthermore, the stiff-
ness increases and the piezoelectric constants decrease as functions of the dehydration
over time. Although the related experimental investigations involve specially prepared
laboratory samples, in which the mechanical states of stress and deformation are already
changed compared to that in living cornea, they essentially describe the long-term behav-
ior of the mechanical and piezoelectric properties. Also, the anisotropic collagen structure
in three dimensions is difficult to characterize experimentally and one can obtain only the
correlated response using optical and X-ray measurements. Because of the above com-
plexities, in order to provide a detailed characterization of the collagen structure and the
resulting piezoelectricity, one requires comprehensive mathematical models that incor-
porate the important effects such as the anisotropy, the dehydration, and the small-scale
dynamics of the cell-matrix adhesion.

In the present paper, we develop a mathematical model for the dynamic piezoelec-
tricity of the corneal membrane and analyze the electric polarization of the composi-
tion due to circumferential stresses produced by bacterial growth or incision. The experi-
mentally measured mechanical and piezoelectric properties reported in the work of Jaya-
suriya et al. [4] are used to construct the constitutive model. A mechanism of long-term
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Figure 2.1. Schematic representation of (a) cornea model geometry and (b) angular orientation of
the samples used in measuring the directional properties.

dehydration based on the experimental observations is included in the model. Coupling
between the elastodynamics and the electromagnetics is dealt with in a systematic man-
ner. A phenomenological approach to introduce the bacterial and antibiotic stress is dis-
cussed. Numerical results on the effect of circumferential stress is reported.

2. Constitutive model

Electromechanical characterization of the cornea tissue properties generally involves
static and dynamic testing of samples with controlled state of dehydration and different
cut angles (θ) from the cornea as schematically shown in Figure 2.1. In the published liter-
ature, some results on the corneal tissue invasive measurements are available, for example
[4]. Such measurements are made by taking into consideration the effect of the cut angle
θ on the anisotropic constitutive relation. They provide further insight into orthotropic
properties (stiffness and piezoelectric constants) in the plane (x, y) assuming “no out-
of-the-plane curvature.” However, the collagen structure in various layers in the stroma
and the type of anisotropy of the extrafibrilar structure are different. An experimental
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electromechanical characterization of these differences would involve multiaxially con-
trolled measurements which are not available at present in the published literature. Also,
the site-dependence of the piezoelectric properties is most likely influenced by the pres-
ence of fibroblasts and cell-regulated processes. This would make the constitutive model
dependent on the high-angle X-ray data (see discussions in [6]) that reveals the struc-
tural details as some function of (x, y,z), z ∈ [hi,h0], where hi and h0 stand for the inner
and the outer surfaces, respectively. However, at present, due to the lack of experimental
data, we have not included such details in the developed mathematical model. Another
important aspect is the variation of the electromechanical properties as functions of de-
hydration over time. In our proposed constitutive model, we introduce these details at
the extent available from experimental observations.

Here, we first introduce a general mathematical setting for our problem. First we de-
fine the Cartesian components of stress (σ), strain (ε), electric charge displacement (D),
electric field intensity (E), magnetic flux (B), and the magnetic field intensity (H) in
(x, y,z). The general objective is to construct a constitutive model

σ = cε−σ p(E), (2.1a)

D = εE+P(ε), (2.1b)

B = μH +μ0M(ε), (2.1c)

where c is the stiffness, σ p is the electric polarization induced stress, ε is the dielectric per-
mittivity, P is the electrical polarization vector due to transformation and deformation
of the macromolecular structure, μ is the magnetic permeability, and M is the magnetic
polarization vector due to molecular spin. Splitting the total charge density ρtotal and the
total conduction current J total as

ρtotal = ρc + ρp, J total = J + J p + Jm, (2.2)

where ρc is the true charge density, ρp is the bound charge density, J is the true conduction
current, J p is the conduction current due to bound charge, Jm is the molecular current
density, we have the local conservation laws:

∇·P =−ρp, ∇×M = Jm, (2.3)

and the local continuity condition

∇· J p =−ρ̇p. (2.4)

In order to characterize the constitutive mechanism that is likely to influence the refrac-
tive property most significantly, we consider the horizontal (θ = 0), the vertical (θ = 90◦),
and the diagonal (θ = 45◦) cuts as discussed in [4]. Dynamics of the horizontal cut sample
involves (σxx,Ez) so that the longitudinal stiffness is obtained as

c11 = c0
11e

t/τ1 , τ1 > 0, (2.5a)



D. R. Mahapatra and R. V. N. Melnik 725

and the piezoelectric coefficient under transverse electric polarization is obtained as

d31 = d0
31e

t/τ′1 , τ′1 > 0, (2.5b)

where the superscript 0 indicates the corresponding quantities at some initial state at time
(t = t0) and τn, τ′n (with n = 1,2, . . .) are the time constants that are estimated from the
time-resolved measurements of the corresponding quantities. Similarly, for the vertical
cut, which involves (σyy ,Ez), one can write

c22 = c0
22e

t/τ2 , τ2 > 0, (2.6a)

d32 = d0
32e

t/τ′2 , τ′2 > 0. (2.6b)

With simple assumptions of aligned collagen fibers undergoing transverse electric polar-
ization in the diagonal cut, which involves measurements in the transformed coordinate
system (r,s,z) (see Figure 2.1), it is reasonable to write

σrr = crrεrr −d3rEz, (2.7a)

crr = c0
rre
−t/τ3 , τ3 > 0, (2.7b)

d3r = d0
3re
−t/τ′3 , τ′3 > 0, (2.7c)

where

σrr = σxx cos2 θ + σyy sin2 θ− 2σxy sinθ cosθ, (2.7d)

σtt = 0= σxx sin2 θ− σyy cos2 θ− 2σxy sinθ cosθ, (2.7e)

so that the orientation-dependent properties are obtained from experiments as

c12 = (crr − c11)cot2 θ, c21 = (crr − c22) tan2 θ, (2.7f)

d36 = d3r −d31 cos2 θ−d32 sin2 θ

2sinθ cosθ
. (2.7g)

Note that the properties estimated in this method are the effective properties of the com-
position. The underlying mechanism of viscopiezoelasticity may be postulated as follows.
Let us consider a representative volume element (RVE) of the cell-matrix composition
and assume that the volume fraction (vh) of the fluid phase is governed by a convection-
diffusion process and can be expressed as

vh = v0
he
−t/τ0 (2.8)

and the piezoelectricity is only due to the structural transformation of the collagen fibers.
Then the true charge density can be approximated as

ρc = vheh, (2.9)
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where eh is the specific electric dipole. Equation (2.1a) takes the form

σ = [vhch +
(
1− vh

)
c f
][

1−αb(t)
]
ε− (1− vh

)
e f E, (2.10)

where ch is the stiffness of the fluid phase, c f is the stiffness of the oriented collagen fiber,
e f = e denotes the electromechanical coupling coefficient matrix due to piezoelectricity
in the collagen fibers. Here we introduce the influence of the bacterial growth in the
stress generation through the bacterial concentration b(t), where α denotes the volume
occupied by the bacterial cells within the RVE. Equation (2.1b) takes the form

D = [vhεh +
(
1− vh

)
ε f
]
E+

(
1− vh

)
eTε+ ε0χ

(
ωj
)
E, (2.11)

where ε0 is the dielectric constant of air, εh and ε f are, respectively, the electric permit-
tivity for fluid phase and the collagen fibers, χ(ωj) is the electric susceptibility due to the
potentially active macromolecules if present in the RVE with resonant frequencies ωj .
Setting M = 0 in (2.1c) leads to B = μH . In our numerical simulation, we drop the above
molecular susceptibility term due to unavailability of experimental data. To this end, we
further simplify the general anisotropic nature of the constitutive model by neglecting
certain elastic constants and certain electromechanical coupling terms, which gives fi-
nally the constitutive equations in the following matrix-vector form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx
σyy
σzz
σyz
σzx
σxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 0 0 c16

c21 c22 c23 0 0 c26

c31 c32 c33 0 0 c36

0 0 0 c44 c45 0
0 0 0 c54 c55 0
c16 c26 c36 0 0 c66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
εyz
εzx
εxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

−
⎡

⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
e31 e32 e33 0 0 e36

⎤

⎥
⎦

T ⎧
⎪⎨

⎪⎩

Ex
Ey
Ez

⎫
⎪⎬

⎪⎭
,

(2.12)

where

ei j = cjkdik (2.13)

with Einstein’s summation in tensorial index k. Having obtained an explicit form of the
constitutive model, the electromechanical conservation equations are derived in the next
section.

In context of (2.10) and (2.11), note that we have introduced the effect of bacterial
cells or antibiotic agents through the variable b(t). For simplicity, it is assumed here that
these external agents do not alter the electrical polarization properties of the macro-
molecules responsible for piezoelectricity. However, such an assumption may not hold
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in real situations and a more detailed model may need to be developed in such cases. On
the other hand, introduction of the variable b(t) can also be useful in analyzing the long-
term remodelling of site-specific collagen structure. The associated evolution law can be
written as

∂b

∂t
=∇(�(b)∇b)+βndb−μdb, (2.14)

where the first term in the right-hand side represents the remodelling mechanism of bac-
terial cell movement with �(b)=�0bk, k > 0, and �0 constants. The second term repre-
sents the dosimetric effect, that is, consumption of nutrients with concentration nd(x, t)
and β a nutrient-cell conversion factor. The third term represents formation of stationary
cell-tissue structure. A detailed experimental observation of bacterial growth in chemi-
cally inert environment based on the above evolution law can be found in [1]. Since not
much detailed information related to corneal collagen growth or dosimetric parameters
is available, in the present study we do not couple (2.14) in the computational model, but
assume various spatiotemporal states of b in (2.10) with the following distribution:

b(r,θ, t)= α′(t)e−k′(R−r)
[

1−α′′e−k′′(θ2−θ2
0 )
]

, (2.15)

where (r,θ) are the polar coordinates in the projected plane, R is the radius of the corneal
anterior on the projected plane, θ0 is the angular orientation of the active site, α′(t) is
prescribed at a given time assuming a different time scale for growth as compared to the
dehydration, and k′, α′′, k′′ are constants.

3. Dynamic piezoelectricity

The momentum conservation equation is derived in the usual manner, which is given by

ρ
∂2u

∂t2
−∇ · (c∇u)= f (∇E), (3.1)

where the effective mass density is

ρ = vhρh +
(
1− vh

)
ρ f , (3.2)

and the components of the right-hand electrical source term are written as

fx =−e31
∂Ez
∂x
− e36

∂Ez
∂y

, fy =−e36
∂Ez
∂x
− e32

∂Ez
∂y

, fz =−e33
∂Ez
∂y

. (3.3a)

We note that f is a function of only the transverse electric field Ez. This is due to the par-
ticular form of electromechanical coupling assumed in (2.12). For practical applications,
this is a reasonably simple type of electromechanical coupling, yet an important one to
analyze the direct influence of piezoelectricity on the refraction of incident ray Ez → E⊥ at
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the outer surface z = ho, with the constitutive model defined in (x, y,z) and transformed
to (x, y,z⊥), where the subscript⊥ denotes the outer surface normal. In the finite-element
computations that follow, the deformations at the surfaces and at the annular base (see
Figure 2.1) have to satisfy the appropriate boundary conditions in a weak sense.

The transverse electric field in (3.3a) has to satisfy Maxwell’s equations for the electro-
magnetic field:

∇×E =−Ḃ, (3.4a)

∇×H = Ḋ+ σcE+ J , (3.4b)

∇·D = ρc, (3.4c)

∇·B = 0, (3.4d)

where σc is the effective conductivity of the RVE. The associated general impedance
boundary conditions (GIBCs) are

n× (E−E⊥
)=−J sm, n× (H −H‖

)= J s (3.5a)

at surfaces z⊥ = ho, hi, and

n ·D = ρs, n ·B = 0 (3.5b)

at the annular base near the corneal anterior and scleral interface with ρs as the surface
charge, n is the unit outward surface normal.

By using the constitutive model derived in Section 2, Maxwell’s equations in (3.4a)–
(3.4d) are combined into the following system of coupled hyperbolic equations:

με
∂2E

∂t2
+ σcμ

∂E

∂t
−∇2E+μeT

∂2ε

∂t2
−ε−1∇∇ · (eTε)= ε−1∇ρc +μJ̇ , (3.6a)

με
∂2H

∂t2
+ σcμ

∂H

∂t
−∇2H −∇×

(

eT
∂ε

∂t

)

=−∇× J , (3.6b)

where the right-hand-side terms in (3.6a)-(3.6b) are governed by the equation of the
conduction of true charge, that is,

∇ · J =−ρc. (3.7)

In the finite-element simulations reported next, we have omitted the conduction part,
for the sake of simplicity, while analyzing the direct piezoelectric effect. Due to this
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simplification, we finally have

με
∂2E

∂t2
+ σcμ

∂E

∂t
−∇2E = gE

(
∂tt,∇,ε

)
, (3.8a)

με
∂2H

∂t2
+ σcμ

∂H

∂t
−∇2H = gH

(
∂t,∇,ε

)
, (3.8b)

where the components of the right-hand-side source terms, which are coupled with (3.1),
are given by

gEx = ε−1
11

∂2P̄

∂x∂z
, gEy = ε−1

22
∂2P̄

∂y∂z
, gEz = ε−1

33
∂2P̄

∂2z
−μ33

∂2P̄

∂t2
, (3.9a)

gHx =
∂2P̄

∂y∂t
, gHy =−

∂2P̄

∂x∂t
, gHz = 0, (3.9b)

and P̄ is the effective polarization (a scalar quantity) due to piezoelectricity, which is given
by

P̄ = e31εxx + e32εyy + e33εzz + e36εxy. (3.10)

We solve the coupled system of hyperbolic equations (3.1), (3.8a), and (3.8b), supple-
mented by associated boundary conditions in {u,E,H} by using a three-dimensional
finite-element discretization of the domain shown in Figure 2.1(a). COMSOL has been
used for the solution where the constitutive model and the coupled system of equations
have been implemented with the boundary conditions as weak constraints. Tetrahedral
Lagrangian finite-elements and the second-order accurate time-stepping scheme have
been used for computation.

4. Results and discussions

For numerical simulations, we consider a model of (x, y) cut of the corneal section as
shown in Figure 2.1(a). It contains most of the usual geometric features with inner radius
5.685 mm and outer radius 7.259 mm. The conic-angle at the focal point is assumed to
be 2× 59.434◦ with hi = 2.794 mm, h0−hi = 0.449 mm at (x, y)= (0,0). Thickness at the
annular base is assumed to be 1.574 mm. A 100 Hz harmonic shear stress with amplitude
of 10 MPa is applied at the base along x. A residual stress pattern over a circumferential
arc segment can also be used to study the effect of incision. Figures 4.1(a) and 4.1(b), re-
spectively, show the deformation contours without any circumferential activity and with
bacterial growth, αα′ = 0.1, k′ = 10/R, α′′ = 0. The contour of transverse electric field in
Figure 4.2 reveals the possible regions of refractive property modification as under the
deformation pattern shown in Figure 4.1(b). Attention has been paid to avoid the spuri-
ous effect due to mesh discretization error. The results presented here have been obtained
for a refined mesh with 11987 tetrahedral elements and nonuniform time-stepping set by
the direct nonsymmetric sparse matrix solver used. It can be seen from Figure 4.1(b) that
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Figure 4.2. Sliced contour of transverse electric field E3.

the residual stress at the circumferences due to bacterial growth (or incision) significantly
alters the deformation profile and this observation is in close agreement with the studies
reported in [6]. Further detailed analysis of the realistic situation of tunneling incision
and astigmatism will be studied based on the present model in future research.
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