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Abstract. For application developments of ferroelastic material, it is important to understand
the interaction between wave propagations and phase transformations. In the current study,
a mathematical model and its numerical discretization are constructed to analyze the wave
propagation in shape memory alloy rods. The first order martensitic transformations and the
associated effects of thermo-mechanical coupling are accounted for by employing the modi-
fied Ginzburg-Landau-Devonshire theory. The Landau-type free energy function characterizes
different phases, while a Ginzburg term is introduced to account for the domain wall energy
during phase transformations. The effect of internal friction on wave propagation patterns is
analyzed under shock loadings implemented via stress boundary conditions. For practical nu-
merical simulations of SMA samples, the constructed model of coupled nonlinear system of
PDEs is reduced to a system of differential-algebraic equations, where the Chebyshev colloca-
tion method is employed for the spatial discretization, while the backward differentiation is used
for the integration in time. A series of numerical experiments are carried out on copper-based
SMA samples. Propagation of stress waves induced by shock loadings is analyzed for different
initial temperature. It is demonstrated that the patterns of wave propagation is complicated
at low temperatures by phase transformations, while more regular patterns are observed for
high temperature distributions. These observations are in agreement with experiments. Finally,
the influence of viscosity effects(due to internal friction) on the overall thermo-mechanical be-
haviour of rods is analyzed numerically.
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1 Introduction

Shape Memory Alloys (SMA) have been investigated from various aspects by mathemati-
cians, physicists, and engineers in the past decades, due to their unique properties of being able
to convert energy between thermal and mechanical fields, which are promising for many ap-
plication branches such as mechanical and control engineering, biomedicine, communication,
robotics and so on [6]. Motivated by application developments, nonlinear wave propagations
in the material have been investigated since it is an elementary aspect for the prediction and
understanding of dynamical response of the SMAs under dynamical loadings [1, 4, 11].

Compared with conventional wave propagations in solid materials, the impact induced wave
propagations in the ferroelastic materials requires deliberate treatments and extra measures to
cope with difficulties caused by phase transformations [1, 4, 11]. In general, impact loadings
on the ferroelastic materials will cause nonlinear thermo-mechanical waves which are similar
to those of other thermo-elastic materials under impact loadings. The differentiation of waves
in ferroelastic materials is that the first order martensitic transformation might be induced by
the waves. The transformation is reversible, and its native nonlinearity and hysteresis will
have a heavy influence on the wave propagation and make the wave propagation pattern more
complicated [1, 4, 11].

For the modelling of impact induced wave propagations and phase transformations, a sound
constitutive theory is in the heart of the whole model [1, 11]. Various constitutive models have
been proposed on mesoscale or microscale to capture the phase boundary movement induced
by the dynamical loadings [2, 10]. In Ref. [1, 2], a one-dimensional model for modelling
the shock wave propagations with phase transformation was constructed on the basis of a non-
convex Helmholtz free energy function, and the whole structure was classified into different
domains due to the phase transformation, while the movement of boundaries among domains is
modelled using the so called “jumping conditions”. This approach is suitable for microscopic
problems, but for engineering applications, the model normally is required at macroscale, and
the continuity of the governing equation is essential in many cases. In Ref. [8, 14], the dynami-
cal behaviour of phase boundaries was modelled using a thermo-mechanical coupling approach,
but based on a linearized constitutive theory, whose application potential is obviously limited.

For real engineering applications, dynamical response of SMA materials caused by impact
loadings need to be understood for design or control purpose at macroscale. For this pur-
pose, displacement and temperature evolution in the material are normally sought. Models on
mesoscale is not suitable for the purpose, because another model need to be constructed to
bridge macroscale properties and mesoscale domain structures. Another aspect of modelling
the dynamics of ferroelastic material under impact loadings is the thermo-mechanical coupling
effects. In most of existing investigations, the thermal dynamics are either ignored [1, 4, 10], or
modelled separately from the mechanical dynamics [8, 14], which is an obvious deviation from
the physics of SMAs, since the thermal and mechanical fields are intrinsically coupled in SMA.
When the SMAs are used for damping purpose or other cases where the conversion of energy
between the thermal and mechanical field are important, the coupling effects are expected to be
particularly important, and the constitutive theory should be constructed by taking into account
both fields simultaneously.

In this paper, the nonlinear thermo-mechanical wave propagations in SMA rods induced by
impact loadings were investigated at macroscale. To capture the thermo-mechanical coupling
and nonlinear nature of the phase transformations, the Ginzburg - Landau theory is applied to
model the phase transformations in the SMA rod [11], the governing equation for the mechan-
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ical field is obtained using minimization of mechanical energy, while that for the thermal field
is obtained using the conservation law of internal energy. By this approach, the mechanical and
thermal fields can be intrinsically coupled in the model. Impact loadings at the end of the SMA
rod is implemented in terms of stress. Nonlinear wave propagations are simulated with various
initial temperatures.

2 The Boundary - Initial Value Problem

We restrict our investigation in one-dimensional cases, as sketched in Figure (1). The SMA
rod under consideration occupies an interval[0, L], and is subjected to an impact loading from
the right endx = L, while another endx = 0 is fixed. The rod is thermally insulated at both
ends so there is no heat loss (gain) to (from) the ambient environment. Under external loadings,
a point (particle) in the SMA rod atx will be carried to a new positionx + u(x, t) due to
deformation, whereu(x, t) is the longitudinal displacement at timet. Obviously,u(x, t) should
be continuous at any time and position because the rod is assumed not to be broken. The stress
is related to the deformation byσ(x, t) = f(ε(x, t)) whereε(x, t) = ∂u(x, t)/∂x is the strain.

L

Impactx

Figure 1:Shape memory alloy rod under impact loadings

For the dynamics of the mechanical field, the Lagrangian functionL is introduced:

L =

∫ T

0

∫ L

0

(
ρ

2
(u̇)2 −F)dtdx, (1)

whereρ is the density of the material andF potential energy density of the material. The
differentiating feature of the Ginzburg - Landau theory is that the potential energy density is
constructed as a non-convex function of the chosenorder parametersand temperatureθ, as
a sum of local energy density(Fl) and non-local energy density (Fg). For the current one-
dimensional problem, the strainε(x, t) is chosen the order parameter, and the local free energy
density can be constructed as the Landau free energy densityFl(θ, ε) [3, 7, 11]:

Fl(θ, ε) =
k1(θ − θ1)

2
ε2 +

k2

4
ε4 +

k3

6
ε6, (2)

wherek1, k2, andk3 are material-specific constants,θ1 is the reference transformation temper-
ature.

The non-local free energy density is usually constructed as [3, 7]:

Fg(∇ε) = kg(
∂ε

∂x
)2, (3)

wherekg is also a material-specific constant. The non-local term above accounts for inhomoge-
neous strain field. It represents energy contributions from domain walls among different phases,
which is an analog of the Ginzburg term in semiconductors. In order to account for dissipation
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effects accompanying with phase transformations, a Rayleigh dissipation term is introduced
here as follows [3]:

FR =
1

2
ν(

∂ε

∂t
)2, (4)

whereν is the material-specific constant. The above dissipation term accounts for the inter-
nal friction accompanying with the movement of the interfaces between different phases. At
macroscale, it stands for the viscous effect of the phase transformation [2].

By substituting the potential energy density into the Lagrangian function given in Eq.(1),
and minimizingL with respect to the displacement fieldu(x, t), the governing equation for the
dynamics of mechanical field can be easily obtained as follows, if the dissipation effects are
also taken into account:

ρü =
∂

∂x

(
k1(θ − θ1)ε + k2ε

3 + k3ε
5
)

+ ν
∂

∂t

∂2u

∂x2
− kg

∂4u

∂x4
. (5)

The dependency of the dynamics of the mechanical field on the temperature is obvious from
the above wave equation. For the dynamics of the thermal field, its governing equation can be
obtained by using the conservation law for the internal energye, and obey the thermodynamical
laws:

ρ
∂e

∂t
+

∂q

∂x
− σ

∂ε

∂t
= 0, (6)

whereq = −k∂θ/∂x is the heat flux according to the Fourier law for heat conduction, andk is
the heat conductance for the material. It is easy to connect the internal energy to the Helmholtz
free energy densityH(θ, ε) = F − cvθ ln θ using the thermodynamical equilibrium condition:

e = H− ∂H
∂θ

, σ =
∂H

∂ε
, (7)

wherecv is the specific heat capacitance. By substituting the above relationship into the Eq.(6),
the governing equation for the thermal field can be formulated as:

cv
∂θ

∂t
= k

∂2θ

∂x2
+ k1θε

∂ε

∂t
, (8)

The above constructed governing equations for the mechanical and thermal fields are actu-
ally based on the same potential energy densityF(θ, ε), which is constructed as the Landau
free energy density here. It has been shown clearly in Ref.([3, 11, 15]) that the mathematical
modelling given by Eq.(5) and Eq.(8) is capable to capture the first order phase transformations
in ferroelastic materials, and the intrinsical thermo-mechanical coupling is also captured by in-
troducing such a temperature dependent free energy density. But the numerical simulation has
to be deliberately tuned because the very strong nonlinearity and nonlinear coupling between
the mechanical and thermal fields.

Considering the fact that, in the current paper, the mechanical loading is implemented in
terms of impact stress, it is more convenient if the stress-strain relation is kept as an extra
equation for the model and the stress is solved as a dependent variable. This treatment will make
the treatment of boundary conditions much easier. For this purpose, the so called “Differential
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Algebraic Equation” (DAE) approach is employed here and the mathematical model can be
re-formulated as the following:

∂u

∂t
= v, ρ

∂v

∂t
=

∂σ

∂x
,

cv
∂θ

∂t
= k

∂2θ

∂x2
+ k1θε

∂ε

∂t
,

σ = k1(θ − θ1)ε + k2ε
3 + k3ε

5 + ν
∂v

∂x
− kg

∂2ε

∂x2
,

(9)

wherev is particle velocity in the SMA rod.
In the above model, there is no distributed mechanical and thermal loadings included. To

complete the model the following boundary conditions are employed for the mechanical and
thermal fields;

∂θ

∂x

∣∣∣∣
x=0

= 0,
∂θ

∂x

∣∣∣∣
x=L

= 0,

u(0) = 0,
∂2u

∂x2

∣∣∣∣
x=L

= 0, σ(L) = g(t) (10)

whereg(t) is a given function describing the stress impact profile.

3 Numerical Methodology

As mentioned in the above section, numerical analysis for the wave propagations given by
the mathematical model has to be deliberately tuned due to the difficulties caused by the non-
linearity and phase transformations. Considering the fact that both dispersion and dissipation of
wave propagations will presents in the physics of the current problem, the numerical algorithm
for the problem has to tuned to take care of both numerical dissipation and dispersion. At the
same time, the accuracy of the algorithm should also be equally concerned. Being aware of
these aspects, here a multi-domain decomposition method together with the Chebyshev collo-
cation methods is employed for the purpose, which is a compromise among various aspects of
the concern.

3.1 Chebyshev Collocation Methods

For the Chebyshev pseudo-spectral approximation, a set of Chebyshev points{xi} are cho-
sen along the length direction as follows:

xi = L

(
1− cos(

πi

N
)

)
/2, i = 0, 1, . . . , N. (11)

Using these nodes,u, v, θ, andσ distributions in the rod can be expressed in terms of the
following linear approximation:

f(x) =
N∑

i=0

fiφi(x), (12)

wheref(x) stands for any ofu, v, θ, or σ, andfi is the function value atxi. φi(x) is the ith

interpolating polynomial which has the following property:

φi(xj) =

{
1, i = j,
0, i 6= j.

(13)
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It is easy to see that the well known Lagrange interpolants satisfy the interpolating require-
ments. Having obtainedf(x) approximately, the derivative∂f(x)/∂x can be easily obtained
by taking the derivative of the basis functionsφi(x) with respect tox:

∂f

∂x
=

N∑
i=1

fi
∂φi(x)

∂x
. (14)

and similarly for the higher order derivatives. All these approximation can be formulated in
matrix form, for the convenience of programming.

3.2 Multi-Domain Decomposition

It is well known that the spectral methods are able to give a relative higher accuracy with
the same number of nodes for discretization, compared to either finite difference methods or
finite element methods. On the other side, when the solution to the problem is not higher-
order differentiable, the spectral methods might introduce artificial oscillation due to the Gibbs
phenomenon. In the current problem, the impact induced wave propagation might be such a
case. To avoid this, a multi-domain decomposition method is employed here.

For this problem, the whole computational domainD = [0, L] is evenly decomposed intoP
intervals (subdomains), with an overlap region between each pair of consecutive intervals, as
sketched in Figure (2):

D =

p=P⋃
p=1

Dp, (15)

where the number of subdomainsP is chosen according to the specific problem under consid-
eration. In each interval, the Chebyshev collocation methods discussed above is employed to
approximate the solution and its derivatives.

Interval p+1Interval p

y
2
p

y
n

p

y
n−1
p+1

y
1
p

y
n−1
p

y
2
p+1

y
1
p+1

y
n

p+1

Figure 2:Sketch of domain decomposition and discretization

The coupling between each pair of consecutive intervals can be implemented by setting the
following requirements:

yn
p = y2

p+1, yn−1
p = y1

p+1, (16)

where the subscriptp stands for the interval number, while the superscriptn stands for the node
number in each interval. Variableyn

p is the function value at pointxn
p (thenth node in thepth
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interval), which could be any of the dependent variables we are solving for. pointxn
p is actually

the same node ofx2
p+1, andxn−1

p is the same ofx1
p+1.

The derivatives of functions in the overlapped nodes are approximated by taking the average
of their values evaluated from the two intervals involved:

∂y

∂x

∣∣∣∣
xn−1

p

=
1

2




N∑
i=0

yi
p

∂φi(x)

∂x

∣∣∣∣∣
xn−1

p

+
N∑

i=0

yi
p+1

∂φi(x)

∂x

∣∣∣∣∣
x1

p+1


 , (17)

∂y

∂x

∣∣∣∣
xn

p

=
1

2




N∑
i=0

yi
p

∂φi(x)

∂x

∣∣∣∣∣
xn

p

+
N∑

i=0

yi
p+1

∂φi(x)

∂x

∣∣∣∣∣
x2

p+1


 ,

The approximation to the second order derivatives can be done using the same average for the
nodes in overlapped region.

3.3 Backward Differential Formula Methods

By employing the multi-domain decomposition methods combined with the Chebyshev col-
location methods, the given set of partial differential equations in Eq. (9) can be converted into
a DAE system, which can be sketched as the following form:

M
dX

dt
+ N(t, X, g(t)) = 0, (18)

whereX is the vector collecting all the variables we are solving for,M is a singular matrix,N
is a vector collecting nonlinear functions produced by spatial discretization. The resultant DAE
system is a stiff system and has to be solved by an implicit algorithm. Here the second order
backward differentiation formula method is employed for the purpose. By discretizing the time
derivative using the second order backward approximation, the DAE system can be converted
into an algebraic system on each time level, which can be formulated in a form as follows:

M

(
3

2
Xn − 2Xn−1 +

1

2
Xn−2

)
+ ∆tN (tn, X

n, g(tn)) = 0, (19)

wheren denotes the current computational time layer. For each computational time layer, iter-
ations must be carried out using Newton’s method forXn by use ofXn−1 andXn−2. Starting
from the initial value, the vector of unknownsX can be solved for all specified time instances
employing this algorithm.

4 Numerical Experiments

A series of numerical experiments have been carried out to investigate the nonlinear wave
propagations in the SMA rod involving phase transformations. All experiments reported here
are carried out on a Au23Cu30Zn47 rod, with a length of 1cm. The physical parameters, exceptν
andkg, for this specific material are taken the same as those in [15], which are listed as follows
for the sake of convenience:

k1 = 480 g/ms2cmK, k2 = 6× 106g/ms2cmK, k3 = 4.5× 108g/ms2cmK,

θ1 = 208K, ρ = 11.1g/cm3, cv = 3.1274g/ms2cmK, k = 1.9× 10−2cmg/ms3K.

Numerical experiments indicate that there is no remarkable effect from the value of the
Ginzburg coefficientkg in wave propagations and phase transformations under external load-
ings, as far as its value is relatively small compared tok1. So this coefficient is uniformly chosen

7
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askg = 0.05k1 for all the numerical experiments here. The internal friction coefficient is not an
easily obtainable constant, and is chosen here as a small fraction ofk1 as0.01k1. The whole rod
is divided into7 sub-intervals, in each interval there are15 nodes for spatial discretization. All
the simulations are carried in the time span[0, 0.2]ms, and the time stepsize for the integration
is chosen as2.5× 10−5ms.

It has been shown [11, 15] that the Landau free energy density has only one local minimum at
high temperature and there is no phase transformation in the material in this case. While at low
temperature, the free energy density has two symmetrical local minima, which are associated
with two martensite variants (martensite plus and minus) in the Ginzburg - Landau theory. Phase
transformations between the two martensite variants might be induced by mechanical loadings.
If the temperature is intermediate, there are three local minima, the third one at the center is
associated with the austenite. In the last case, there are mesostable phases, and phase transition
between austenite and martensite might be induced by mechanical loadings.

To demonstrate the effect of phase transformations on the nonlinear thermo-mechanical wave
propagations in the SMA rod, three representative temperatures are chosen for the illustration
purpose here. The first experiment is carried out with the initial condition:u = v = s = 0, θ =
300K as a high temperature example, and the impact loading is set as:

g(t) =

{
4× 103, 0 ≤ t ≤ 0.006

0, t > 0.006
(20)

which can be regarded as an approximation to a pulse stress impact on the SMA rod.
The strain and temperature evolution in the SMA rod is plotted versus time in the top row

of Figure (3). Numerical results show clearly that the impact induced wave propagates along
the negativex direction firstly, then hit and bounce back atx = 0. The temperature evolution
indicates that there is an associated thermal wave induced by the mechanical wave due to the
thermo-mechanical coupling effect. The propagation pattern of the thermal wave is similar to
that of the mechanical wave. The oscillation in the displacement evolution due to the stress
impact is plotted in the left bottom subplot of Figure (3). To show the wave propagation more
precisely, the strain distributions at four chosen time instances are plotted together in the right
bottom subplot of Figure (3). It is shown that the strain distribution in the rod is relatively
smooth and there is no obvious sharp interface between different strain values. The wave prop-
agation speed can be estimated by the location of the wave frontier plotted in the figure. With
the current initial temperature, the strain wave is bounced back fromx = 0 and its frontier is
aroundx = 0.6 whent = 0.025.

The second example is performed with the same computational conditions and loading, ex-
cept that the initial temperature now is setθ = 250K, the numerical results for this case is
presented in a similar way in Figure (4). By comparing the results with those of the first ex-
periment, it is easy to see that the strain and temperature waves are not that regular as those in
the first experiments. This can be explained by the theory that there are phase transformations
induced in the rod. The frontier of the waves are more obvious and wave propagation pattern
is more complicated. The oscillation in the displacement evolution has only two peaks in this
case, while three peaks are found in the first experiment. At the four chosen time instances, the
strain distributions are not that smooth as those with higher temperature, oscillations occur in
the strain distributions, due to the phase transformations between martensite and austenite. At
t = 0.025, the wave frontier is aroundx = 0.4 and propagating long the positivex direction. It
indicates that the wave speed is a little lower than that in the first experiments. Similarly, there
is a thermal wave caused by the mechanical wave due to the coupling.
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Figure 3:Nonlinear thermo-mechanical wave propagation in shape memory alloy rod caused by a stress impact,
initial temperature isθ = 300K

For the third experiment, the initial temperature is setθ = 210K. Because only martensite is
stable with this temperature, the initial displacement of the SMA rod is setu = 0.118x (0.118
is the estimated transformation strain with the given temperature using the Landau free energy
density). The numerical results for this case are presented in Figure (5). The results indicate that
the whole SMA rod is calssified into two domain, one consists of martensite plus (with positive
strain value) and another one minus (with negative strain values). The interface between the
two domain is driven by the impact stress loading, as sketched in the left top subplot in Figure
(5). With the current computation conditions, the wave hit the end of the rod atx = 0 only
once and bounce back. There is only one peak in the displacement oscillation. In both of the
martensite plus and minus domain, there are minor waves presented. The wave propagation
speed is much lower compared to those of previous experiments, and the wave speed changes
more remarkably during the propagation process. Att = 0.03, the wave frontier is atx = 0.2
and not achieve the endx = 0 yet.

To investigate the effect of the internal friction, the final experiment is done with different
internal friction coefficients, while all other computation conditions are the same with those in
the third experiment. The numerical results are presented in Figure (6). In the top row of Figure
(6), the strain evolution and strain distributions at four chosen time instances are presented for
ν = 20, while in the bottom, those forν = 30 are presented. It is shown clearly by the strain
distributions at the chosen time instances that the wave propagation speed decreases when the
internal friction coefficient increases. Whenν is increased to30, the impact stress loading is
not able to convert the whole SMA rod from martensite minus to plus, while the same impact
loading can do the job whenν = 20 and less, because less energy is dissipated due to the
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Figure 4:Nonlinear thermo-mechanical wave propagation in shape memory alloy rod caused by a stress impact,
initial temperature isθ = 250K.

internal frictionν is smaller.
From the above numerical experiments, it is shown that nonlinear thermo-mechanical wave

propagations caused by impact loadings are influenced by the material temperature. Thermal
waves could be induced by impact mechanical loadings. Numerical results show that the wave
propagation pattern is more complicated when phase transformations are involved, and dynam-
ical response of the material is very different from those with no phase transformations.

5 Conclusions

In this paper, we constructed a mathematical model for wave propagations in a shape mem-
ory alloy rod induced by a stress impact. We employed the modified Ginzburg - Landau the-
ory for the mathematical modelling, by which the first order martensite phase transformations
are modelled and the thermo - mechanical coupling is captured. Multi-domain decomposition
is employed together with Chebyshev collocation methods for spatial discretization, and the
backward differentiation formula is used for solving the differential algebraic system. The non-
linear thermo-mechanical wave propagations in the SMA rod are simulated with various initial
temperatures. The effect of phase transformations on the wave propagations are investigated.
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