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Summary. Starting from a tec-dimensional model npprosimatiog e dypamios of
eubicsto-tel ragonal and tetragonad-to-orthorbombic phase transformations in shap
memory malerials, it s sbown thit the Falk model o the one dimesgional case is
a apeiad ease of the Tormlated model. Comgitational expechoents Dased o @
eonservative difference sehenwe are carried ont toanalyse Chermomechanical wave
e tions oo roel with shiepe memory effeer,

1 Introduction

A better nderstanding of che dyvnanics of plase transitions in shape mesnory
allovs (SMA) s an important task in many areas of applications (1] ad
references therein ). However, even for thie one divdemssional ease, the nnalesis
of 1his dynamics & quite ovolved duee to a strongly wonlinear pattern of
interaction between wechanical and thermal Gelds 9],

Martensitae phase transformations of the shear type [3] have Béen n snle-
Jert ol intensive studies, in porticnbir o the onesdimensions ] ease where He
el for shape memory alloys is wsially based on the Landan-Gingbnrg froe
coergy funetion. Althougly varions approgimations 1o the free enerpy fane-
tion have been proposed in both one diensionsd s theee dimensional cises
(o [1] ane references: therein), most of the results availsble in the liter-
ture in the context of SMA wmodelling deal with one-dimenstional models,

I this paper. we propose a two-timensional model deseribing square-
to-rectangilar phiose translormations in materials with shape memory, Such
translormations are known to proavide an approxination to cubic-to-tetrag-
oral amd tetraponal-tosartliorhombic transformations observed e the gon-
cral three-dimensional case [5, G 7 We reduee the formualated model to the
one-cirnensional case, aud solve the resulting svstem nimerically applying &
vconservative difference scheme
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2 Mathematical model
for square-to-rectangular transformations

Based on conservation laws for linear momentwm and encrgy, the svstem
deseribing coupled thermomnechanical wave interactions for the first order
phase transitions in a two dimensional SMA structure can be written as
follows (e.g.. [14. 10])

ol
rrdf—- !.f' =V:o+ fi, Li=18,
iht= )
e (1)
7. s v —
pm gt (V) +Vig=ug,

where pis the density of the materal, w = {w;}iz12 s the displacement
vector, v is the velocity, & = {a,;} is the stress temsor, q is the heat flux, e is
the internal energy, £ = (1, f2}?7 and g are mechanical and thermal loadings,
respectively. Let o be the free energy function of a thermomechanical system
deseribed by (1), Then, stress and the internal energy function are connected
with o by the following relationships

il Fie 1)
Tg=p—, e=g—f—, 2
FH'I']' R=e i )
where # is the temperature, and the Cauchy-Lagrangian strain tensor 6 is
given by its cotnponents as follows (with the repeated-index convention used)

. ik t) O, {x.t])/ n1 = .
iy (%, 1) = ( Bz, = i, p I T e (3

where & is the coordinates of a material point in the domain of interest,

For the square-to-rectangnlar transformations [5, 6], it was established
earlier that the free energy fimetion ¢ can be represented in terms of a Landan
free energy fimetions Fr as follows

~g,@nd+ Lum + %dlﬁt‘§+ By, = %{bz [ — fhy) s — Zlfurj + éuﬁcﬂ.

(4)

where ¢, is the specific heat comstant. fy is the martensite transition tem-

perature, a1 = 1,2, 3 4,6 are the material-specific coeficients, and #;; eq,

ey are dilatational, deviatoric, and shear components of strain, respectively.
The later are defined as follows

g1 = (T -|-'-rm}f~f§1 ra = (M —?m']/v‘ri ex = [zt )/2. (6)

By substituting the free encrgy funetion defined by (4)1-(5) into model
(1H13). the ollowing coupled system of equations is obiained
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3 Numerical methodology

For the analysis of svstem (6] deseribing nonlinear interactions of conpled
thermomechanical waves in a two-dimensional structure with shape memory
eHect, the development of efficient mimerical tools is necessary. In what fol-
lowes we assume that the deformation of the two dimensional SMA structure
alomg g direction substantially excesds the deformation i the other direc-
tion, =0 that the deformation aleng @ direction ean be neglocted. In (s case
dg fdhea = 0 Buz /it = 0, dhey fles = 00 and svstem (6] s redueed to

iy i \_.’E 3 f i« . )
— - (i g +|f-__|Lir.ll = ff:,]F — £ g ] | ,|f'l.
i Ay 2"

i i V2 e
=5l e )+ M s 4 g,
( .3) Mol =y T4

(7
r,.m

By sotting &) = fy — o fon system {T) ean be recwritten in the form of

the Falk medel

i il i T auy?
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where £y o b op and & are re-normalised material-specific constants, and
Froaml & are distributed mechanical and thermal loadings, Since system {8)
has been already studied numerically (e.ge [30 130 10, 11]). we have chosen
this model as the basis for the analysis of nonlinear thermomechanical wave
interactions. [n (8] a fully conservative scheme for the models deseribing SMA
material dyvaamics has been proposed and justified theoretically, No compu-
tatioml results has boen reported so far with that seheme. In what follows,
we apply the scheme constructed in [8] ta the solution of (8], For this purpose
it is comvenient to infrodoce fwo new variables, and re-write system [5) as
follows:
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where ¢ is strain and s is stress. While spatial discretizations of (9) have boen
carried out in a way analogons to that proposed in [8], we have used an idea of
[12] in reducing {9} to a system of differential-algebraic equations, Then, the
backward differentiation formula methodology is applied to get the numerical
solution of the problem [4]. We note that to deal with a strong (cubic and
quintic] nonlinearities, a smoothing procedure similar to that proposed in
[13] has been employed. In particular, we have nsed the following expansions

e
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Fig. 1. Displacements In o SMA rod in the temperaturesdriven phase (ransition
experinent

Fig. 2. Strain and temperature distributions in o $MA rod in the temperatures
driven phase Lransition experiment
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where ¢, I8 the strain on time level g — 1 if the carrent time level = n.

Finally, we demonstrate the application of the developed methodology
tor the analyvsis of phase tronsformmtions oo AueyChugeZngs rod of length
L = lem. For this specific SALA | all necessary parameters are faken (he same
s in 3, 11, .

As imitial conditions for model (9) we took two symmetric martensites
(" = 20,1869 for (0 < & < 0.5 and 0.5 < © < L respectively), o =0, and
#" = 220, The distributed mechanical loading was assumed constant as F =
A/ (mstem ), and the distributed thermal loading s assomed as € = 3767
sin® (7t 6/ (sl em). The bowndary conditions for this experiment heve heen
tkeen s pinned-end mechnoically and lesalaced thermally. A staprerved grid
swstim was usisd for this simulation. there were 17 nodes used for e, 8 and
in the computational domain (16 nodes were used for e approsimated at flox
puints). Time span of the simulation was [0,40] and time stepsize was set to
00005, Displacewent, strain and temperature distributions in the SMA rod
are prosented in Figs, 1 and 20 The temperature-driven phase transformation
between martensites and anstonite are inooquantitative agrecment with the
resnlts reported in (11
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