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In this paper the operator-difference scheme for the numerical solution of a problem arising from
coupled field theory is thoroughly investigated for the case when the classical assumptions of suffi-
cient smoothness cannot be applied. Such a situation, being typical in many applications, is consid-
ered for the problem of nonstationary electroelasticity.

A new a-priori estimation for the numerical solution of the problem has been obtained. A scale of accu-
racy results for generalized solutions of the problem has begn derived, and the convergence theorem has
been proved. Applications of the theory are considered and computational results are discussed.

Keywords: operator-difference scheme; coupled field theory; generalized solutions; CFL condition
for electroelastic waves.
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1. INTRODUCTION

When engaged in mathematical modeling, we can often observe a gap between
imposed theoretical assumptions on a solution’s smoothness and an actual
smoothness of the solution in a real practical problem.

Typically, relaxation of such assumptions is necessary in many problems where
interconnection of physical fields of different nature is essential in obtaining a plau-
sible picture of the phenomenon under consideration. Coupled field theory prob-

lems are of this type. One of the classical examples of this i§ thermoelasticity [15,
S
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186 R.V.N. MELNIK

27], where the elastic and thermal fields combine into a unified whole which in
general cannot be separated. An efficient way to solve the problem in such cases
includes generalized solutions which is intrinsic to coupled field theory and com-
putational models used for the solution of problems arising therein [29, 33].

In fact, all real processes, dynamic systems and phenomena describe a transfor-
mation of different types of energy which imply that, in general, mathematical
models applied to them should have integral rather than differential features.
Clearly, for example, a border between two different media might not be
described by any differential equation due to a jump of physical parameters. A
similar situation arises when we try to describe a nonhomogeneous medium.
Probably one of the most demonstrative examples of difficulties involved in
mathematical modelling of such media are the non-local models. Along with
classical applications of such models in climate modelling and semiconductor
device simulation [16], [20, 24] non-local type models are typical when we
address physical problems of mathematical modelling using approaches of
extended thermodynamics [9], [26]. In general, many problems in coupled field
theory” do not obtain an adequate description in mathematical models if a-priori
assumptions of excessive’ smoothness are imposed on their solutions. Of course,
such assumptions are questionable when solutions exhibit discontinuities or
steep gradients in their behaviour.

Typically, coupled field theory in the nonstationary case deals with systems of
partial differential equations (PDE) which do not belong to any classical type of
PDES, yet at least one of the equations of such a system is a PDE of hyperbolic
type. Since there is a connection between the hyperbolic (in general, dissipative)
equation with PDE of parabolic (for thermoelasticity) or elliptic (for electroelas-
ticity) typc*, analytical solutions of such problems are quite exceptional. This
leads to a situation where numerical methods become the natural and the most
efficient way of solving problems arising from coupled field theory. Mathemati-
cal challenges and the practical importance of the problems stimulate interest in
them from mathematicians, engineers and scientists.

In this paper we deal with a nonstationary problem of coupled electroelasticity,
the solution of which is of great importance for reliability of many technical
devices such as piezovibrators, different types of transmitters, generators etc
(see, for example, [1], [17], [28]). Applications of piezoelectric components in
intelligent structures and problems in biophysics give an additional stimulus
developing efficient numerical procedures in coupled dynamic electroelasticity.
It is believed that the technique proposed in this paper is applicable to a much
wider class of problems arising from coupled field theory.

* arising from studying microstructures as well as macrosystems.
+ with respect to real solutions.
+ obviously, there are much more complicated cases.
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The paper is organized as follows.

* In Section 2 we formally state the differential formulation of the problem and
point out the difficulties involved in its solution.

* Section 3 addresses issues related to generalized solutions of the problem. In
this section we recall a computational procedure developed in [17] on the
basis of the variational approach.

* In Section 4 we consider a more general operator-difference scheme for solu-
tion of the problem. We explicitly derive a stability condition for such a
scheme which can be seen as a generalization of the classical Courant-Frie-
drichs-Lewy (CFL) condition for the case of coupled electro-elastic waves. A
new a-priori estimation is also obtained in this section.

* Section 5 is devoted to questions of convergence where we derive a scale of
accuracy estimations for the difference problem (considered in section 3) when
the solution of the differential problem is from defined generalized classes.

* In Section 6 some examples from applications are given and numerical
results are discussed.

* Concluding remarks and future directions are addressed in Section 7.

2. MATHEMATICAL MODEL OF COUPLED ELECTROELASTICITY
IN THE NONSTATIONARY CASE

Let us consider a mathematical model of electroelasticity where the investigation
of coupled electrical and elastic fields under nonstationary conditions is essential
to obtain a plausible quantitative (as well as qualitative) picture of physical phe-
nomena in a piezoceramic solid. The existence and uniqueness issues for the
mathematical models of this type were addressed in [14], [22].

The process of coupled electroelastic nonstationary oscillations of a piezocer-
amic cylinder can be described by the system of partial differential equations in
the time-space region Q7 = {(5; ) : Ry <r <R,, 0 <t < T} (see [17] and the refer-
ences therein):

’u 19 o
pF = ;a—r(ro,)—Te+f,(r,t) 2.1)
22(D,) = f(r,0) @2)

which should be completed by initial conditions

du(r,0) _
Btriikt

u(r,0) = uy(r), u(r), (2.3)
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and boundary conditions
0,= p\(1) @ = V(1) for r = Ry, and 0,= pit) @ =— V(1) forr =R,. (2.4)
The most difficult (yet the most interesting for practical reasons) case is that of
radial preliminary polarization. The connection between electric and elastic
fields in this case is fairly strong (see section 6 for details):

o, =c€,.+ep€y—eE,

| op =cpf, +cepty—enk, (2.5)

€nE +tep€qote€,.

I

D

r

There remain only Cauchy relations and the formula for electrostatic potential
@ to be added to complete the problem formulation:

G i .. 2.6)

€g =25 E, ==L

Tooar r ’ ar”’

In (2.1)-(2.6) we use the following notations: u is the radial displacement, E,
and D, are radial components of electric field strength and electric induction
respectively. It is assumed that elastic moduli (cy;), piezomoduli (e;), the dielec-
tric permittivity (€,,), and the density of piezoceramic material (p) are given
constants; whereas f;, f, are given functions of r and ¢ for the density of mass
forces and electric charge density of the solid respectively. We also assume
non-negativeness of potential energy of deformation, i.e. 3 & > 0 such that VE,,
&, the following holds

% wigkdh 2 2
(B1+83) s 481 + 2¢158,&; + 8,
Therefore we have a strongly coupled system of partial differential equations of

the type
2 2
du _1 9/ du tals 5:@7@1 11
o e —2_-e , 2.
P 113,( ) Cugtreu 1:za L4 fir0), 2.7
" @ Loy.au 19u
E“rar( 30) *enrarlrar) ey = n ). 28

In fact, we have the second derivative of @ with respect to r in equation (2.7)
(this equation is mainly responsible for the elastic field) and the second deriva-
tive of u with respect to r in equation (2.8) (this equation is mainly responsible
for the electric field). This connection of the equations is amplified by the bound-
ary conditions for stresses (2.4).

In many cases efficient finite difference schemes for the solution of coupled
field theory problems can be obtained by the use of variational principles. For
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example, the Biot variational principle can be of great help in the coupled ther-
moelasticity, whereas in coupled electroelasticity the conservation energy law for
the whole electromechanical system plays a similar role [23]. Earlier these ideas
were applied to derive difference schemes for coupled nonstationary thermo- and
electroelasticity problems [15], [17]. In this paper we are interested in solutions
that do not possess such high smoothness (for example, CY Q7)) as is often
assumed.

In the next sections we develop a technique that allows us to derive efficient
computational procedures for the investigation of coupling effects in dynamic
electroelasticity problems.

3. GENERALIZED SOLUTIONS OF COUPLED ELECTROELASTICITY
AND THE VARIATIONAL APPROACH FOR NUMERICAL
PROCEDURES

3.1. Weak formulation of the problem

Following the general approach to the evolutionary problems of mathematical
physies [6,11,29,33] we recall that a pair of functions

2 0
(u(r, 0).0(r, 1) € W3(Q7) x L*(I, W, (G)), where @y = G x 1, G = (Ry.R,). 1= (0.7)
(u(r,f) equals to uy(r) for t = 0) is called a generalized solution of the coupled prob-

lem of dynamic electroelasticity (2.1)-(2.6) if it satisfies the following integral
identifies [17]:

dudn : i
f (patar faﬁ"md’d“ ]ﬂnrpu1(r)n(r,0)dr-

[ rfindrdt ¥ne Wa(0,), G.1)
er

Ry

RI
Ju(€rREve,re, c+elzréeat")dr = [ rfitdr VEEWNG) ()

almost everywhere in /. Here Wz(QT) stands for a subspace of W;(QT) that
consists of all elements of W;IZ(QT) which equal zero when f = 7, and for simplic-
ityweset p()=V()=0,i=1,2,

This definition reflects the fact that differential equations of electroelasticity are a
partial case of a more general variational formulation [17]. The use of variational
formulations of the problem is more appropriate to derive computational models
appropriate for further numerical algorithmization.
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3.2. Energy balance equation

For purposes of clarity, in the next subsections we recall the procedure of the con-
struction of efficient difference schemes for the solution of problem (2.1)-(2.6)
[17]. Assume that generalized second derivatives of the solution are square integra-
ble functions from L? (existence and uniqueness of such generalized solutions was
proved in [14]. Then the solution (u(r;£),$(r 1)) satisfies the initial system (2.1)-(2.6)
in the sense of integral identities (3.1), (3.2) and the following integral identity

2
fr(pa—';n o ‘;—“ + —n] drdt = [ rfyndra, (3.3)
Q;r at QT

where 1) is an arbitrary element from W;‘O(QT) *. Let us choose the function
n(rf) in (3.3) as follows
0 for tE€[t,T],
nir,t)=
% for t€[0,1,)

Then taking into consideration that’

aE, € 3€,. " HE . 5Es
J-( rar -+0g at )drdt - f [C‘le" at +C]2( at . ot E’)+
QT Qr
9€ dE, D,
en€ot + €1y =1E,~—E, }drdt

we obtain the following integral equality to characterize energy change in the
electromechanical system:

—dt = rf Harde + E Ldrdr+

[ St = [, ot f,
g du(R,, 1) du(Ry, t)

fﬂ [Rlpl—al —RnP()‘_—at ]d‘

Here Q,‘ ={(rt): Ry<r<R,,0<t<t} and we have denoted the total energy of
the electromechanical system by €. The latter quantity can be written as a sum

€ =K+ W+ P, where
2
T
X = l’ﬁur(&t) dr

* this is a Hilbert space that consists of elements u(r,f) € LZ(QT) which have square summable gen-
eralized derivatives du/or.
T this equality is obtained from state equations (2.5).
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is the kinetic energy,

W = %ﬁ:’r[cu Ef +2c,€, €+ c22€;]dr
is the energy of elastic deformation, and

€ 11 %1 2
P Jxy B
is the energy of the eiectricﬂfli)eld of the system.
To find the integral f ra—t'E (drdt we use identity (3.2) integrated in ¢ from 0

to t; where we set %

0 for tE€[t,T],

Cr,t)=
: aa—T for t€[0,1,).

After simple transformations we have ":

- f r—E drdt = — f r—¢drdt + f

1 ‘1

(3.4)

Taking into consideration that identities (3.4) and (3.5) are satisfied for any
t, €1, we obtain the equation for energy balance for a piezoelectric solid:

de du(R,, 1) au(RO, 1)
dr [Rlp‘ Fr ]

Ry
f fl—dr+

f r¢ﬁdr+ Vit )[aD’f;:" I)Rl + aD’g:D’ I)R(,]. (3.5)

The right hand part of (3.5) contains those sources that causes dynamic behaviour,
i.e. loads on the surface of the body, mass forces and surface charges. It is easy to see
that from the relationship (3.5) we can obtain the equation of motion (2.1), the Max-
well equation® (2.2) and natural boundary conditions of the problem (2.1)-(2.6).

3.3. Derivation of difference schemes

- Using a standard technique, we introduce a difference grid covering the region

Or

Wpr = Wy X Wy

*using (3.2) forC=¢,and 1 =0, ¢
+ more precisely, it is the equation of forced electrostatics of piezoelectrics which is a consequence
of the Maxwell equation.
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where

Rl —RD

W, ={r,.=R(,+ih, h= : i=0,1,...,N},
. {t}- = . B T, | = 0y Lysesiliide

Let the functions y and p be functions of two discrete variables defined on this
grid which approximate the functions of displacement u(r,f) and electrostatic
potential g(r,) respectively. For each t € w, these functions are elements of
Hilbert spaces

Hy = {y(r) :r€ s}, Hy={u(r) 'rEwh;M=0, r=Ry R},

w1th the scalar product (y,v) = 2 hyv,where h = 2 for i=0,Nand h=h for
i= .»N - 1. Let also

W, = {ri = Ry+ih, i = 1,..,N}, 0w, = {r; = Rg# ih; i =01, ...,N-1}.

The first backward-difference, the first forward-difference and the second central
difference approximation of the function o with respect to r shall be denoted as
o, o, o respectively. Analogous notations shall be used for difference approx-
imations with respect to ¢. Notations with a tilde we reserve for functions of the
discrete variable r € wy; and continuous t € I = [0, T].

Our computational model can be derived in two stages [17].

First we approximate the integral of kinetic energy by the composite trapezoi-
dal rule in the space variable 7, that is

oy gD
-E3H(E)
Wi

where K = K"+ O(h?), whereas the integrals of elastic deformation and electric
field are approximated by the composite rectangular rule:

Spn s et . -2
‘/Vh+1)ﬁ = %Zhr[cuEf+26126r€e+622€§+ EllEr],
o,
where W + P = Wh + Pt + O(h?), and

€ =ity o= (usit )/(20), Ereby ™D zii(reh, 1), r=r-h/2 rew,
Then, we approximate the left hand part of (3.5) as follows:

i pzhra‘i”+2h [36' 369 1 ZhrEraD’

wp mh

where € is a differen
cal system, ¥ = dit/
Now after simple tr:
the energy 1deﬂm

p=V
then from the lastgi

Second stage of ous
tial-difference schem
ence scheme for the
* approximation of

for t € w, £

* using grid formulas f

+ since boundary conc
directly from (3.7).




DIFFERENCE SCHEMES IN COUPLED FIELD THEORY 193

where € is a differential-difference analog of the total energy of the electromechani-
cal system, v = du/dt, O, = ¢;;€,+c3€0-€,Er, Op = Cp€r+cyn€o—epnEr.
Now after simple transformations” we obtain a differential-difference analog of
the energy identity (3.5):

) ~(+1) -
pzljzri'%— zrﬁh%(}ér)r % Zrhv— + En’: —t 2 B, aDt
O C H wy o
[RipV(Ry, t) = Roypov(Rg, )] — varn(0,)n + vori (0,)1 + E’_Irl_lfl +
y
- =(+1)
2rh¢i2+ V(r)[ aD.(R aRi’ £ L mY aDr(Ra_(; ”)](3.6)

Wy

* Assuming that v = 0 identically when aD,/at = df,/at = 0 we can derive
from (3.6) the differential-difference analogue of the equation for continuum
medium movement as well as boundary conditions for stresses in (2.4) (since
the latter are natural boundary conditions).

®  On the other hand, assuming that a[),/ dt =0 identically when v = f; = 0
we can obtain the differential-difference analogue of the Maxwell equation:

d at at

* [0
wy h

= i —(#1)
_af, - "
ErhE,‘w’ - Zrhcb(,{ (!){ aD, (R1,t)+RE)+1)aD (Ro 0|

Of course, if we take into consideration that E, = —¢; and set”

¢ = V(r) whenr =Ry, and ¢ = —V(z) whenr=R,,

then from the last equality we have

- (-3D; - 3fy
(&(57),) = (br50)-
Second stage of our derivation consists of time-discretisation of the differen-
tial-difference scheme obtained on the first stage. Finally, we obtain the differ-
ence scheme for the solution of the problem (2.1)-(2.6) that consists of

¢ approximation of the equation of motion and boundary conditions for stresses
for t € w,

* using grid formulas for summation by parts.
1 since boundary conditions for potential are main boundary conditions, they do not follow
directly from (3.7).
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—(+l)
+
'(for)r +f1, for r€ w,,
Py;, = 4 21-(+1)= (+1) 03” (3.7)
& =P Oy iy~ hPo’ for r =Ry,
21-= © 9 :
0 +f1+,—'p1, for r=R;;

approximation of the Maxwell equation for piezoelectrics and the relation-
ship for electric potential:

1= Z
;(rDr)r = fz, Er = _u-;, (3'8)
* approximation of the state equations:

O, = C“Er +Cm€e—€”Er,
Og = Clzer"' CZzeﬂ—eler, (3'9)

Dr = E 1]Er+ elzgﬁ ¥ ellgr’
where we approximate the Cauchy relations as follows

€ = (r=y")/h, € = (y 4y (20); (3.10)
* exact boundary conditions for the potential function on the grid
w= V() for r = Ry and p = -V(¢) forr = R, (3.11)
* and the first initial condition:
y(r,0) = uy(r). (3.12)

* The second initial condition is approximated by the central difference derivative
with subsequent elimination of (-1)-fictitious time layer for ¢ = 0, i.e. we have

:
—(+1)

1-=—, %9 +0p
;(rO’,-),~T+f1 for r € w,,
T —(+1)
= pu(r) + = 21-(+1)- o 3.13
Py = pu(r) +3 ’%%r(“)oi“)———er i ‘;%PG for r=R,, G-13)
_%1;‘(_” +f1+,%p1 for r = R,.

The stability condition for the scheme is provided by the requirement of
non-negativeness of the difference analogue of the energy integral (3.5) [17].
Moreover, using a standard technique based on the Taylor expansion it can be
proved that the difference scheme (3.8)-(3.14) has the second order of approxi-
mation with respect to space and time variables provided the solution of the
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problem belongs to the class C*(Q;). Of course, one can use the Lax theorem
relating consistency and stability of this scheme to the convergence. However,
the rate of convergence is virtually defined by the order of approximation which
depends on a-priori assumptions for the solution smoothness. Because in many
practical applications the solution does not posses such high smoothness as men-
tioned above we need a scale of a-priori estimations relating the rate of conver-
gence of our scheme to the smoothness of the “exact” solution. In a natural way
such a consideration implies the notion of generalized solutions which we intro-
duced at the beginning of this section. In fact, in many applied problems of elec-
troelaslicity* solutions can exhibit wave discontinuities as well as sharp increases
in the amplitude of oscillations subject to initial data. In such cases it is important
to construct numerical procedures and investigate their convergence for prob-
lems with generalized solutions. Such investigations become an intrinsic part of
the justification of the model.

4. DIFFERENCE SCHEMES AND A NEW A-PRIORI ESTIMATION
FOR THE NUMERICAL SOLUTION

4.1. Operator-difference form of the discretized problem

A discrete space-time approximation (3.7)-(3.13) for the problem (2.1)-(2.6)
obtained in section 3 is a partial case of more general operator-difference scheme:

Dy, +Ay+Cin = @, (4.1)
Au+Cyry = @y, (4.2)

y=Yp Dy =y, t=0, 4.3)
where operators of this scheme are defined in the following way:

~(#1)=(+1) —(+1
—%r“ )0£+ )+ctg)+ ), r=R,

i
- 0 i
1 =(ro,), + 5 Ro<r <R,

e e
770r + Op, r=R,

[ 284 )z =)
Tr Er —eler 2 I’=R0

ell(;Er)r_elz

et =
—TrE,+eler, F':Rl

* some examples of this type are given in the section 6
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Dyy =rpy,Au=¢€ 11('—'Er)n Cy= [;‘(euge G 311Er)]ra P = SrS‘(ffl): Py = Sr("fz)-

Here §” and §* are the averaging Steklov operators defined by the formulae:

ST

2 Ry +
’J‘Ru

h

| ) I'+s
Suir,t) = | }J 2u(E,t)de, Ry<r<R,

b

2

u(E,t)dg, r=R,

e 0 =R,
2

14+
.
T

SPvwdn, =0,

vir,uw)du, t>0

ST B ST

S'v(r, ) = 4

The particular form of approximation for the right hand parts of the scheme
(4.1)-(4.3) is problem-specific and depends on the boundary conditions for the
problem.

Due to the presence of a hyperbolic-type operator in the original model, mathe-
matical justification of the scheme (4.1)-(4.3) in applications to many practically
important problems can be provided by obtaining a-priori estimations of differ-
ence solutions in negative norms of the right hand parts. However, the latter is
complicated by the strong electromechanical coupling in the original system.
Hence, to obtain a plausible picture of the propagation of the mixed electro-elas-
tic waves we should deal with coupling from the beginning of the numerical
analysis stage of our investigations.

4.2, Stability and the energy identity in the difference case

Let us introduce the following notations for norms and semi-norms of discrete
functions y and

T

V@I = (0,0 I @Ix = Ay y), Iyl = 3 <yl

t=0

DIFFERE!
iy = Il

Dy~
-+ Dl

The Seml.noml‘ll‘fw

(0,50
holds Vy € wj. Thi
scheme. In fact, ta

wy
ol
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- =
(A, y) = "(Unuﬁ
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2
2 2 €11 =
Wiz, = Iyl - - Rl(—l €,
% 6”

2 t 2
e - AT
L)+ S o)
Dy =54 H F=0 A

1
f 2

Ity = | 3w -
=) A

2
The semi-norm || * |, exists if the following condition

((D1 —%ZA1)J” Y) _12R1(2_§]11|

holds Vy € wy,. This condition allows us to derive the stability condition of the
scheme. In fact, taking into consideration easily proved inequalities:

Jed” = 3 h0)*= % S
o o

2
)l 2+2||Ea||2] >0 (44)
Ell

15 )2 _
ol = ) = Ly
W

+
ay

2 (-1)42

s ey 1 = A
X hertn s ;',2”” g,y, ) SZRDhEhyZ’
w o ®

Wy

as well as the equality:

== - = =2 - = -2
(Ayy,¥) = 1(0p, &) +r(ay, €0) = r(cy[€]" + 2c12(€r,€0) + el €6l ),
it is not difficult to conclude that the condition (4.4) will be satisfied if the fol-
lowing inequality is fulfilled:
1

Tsé{(l—g)/[l e R h+C22:4e$2/6“h2]}2, (4.5)
c P 1+d 4RGC”(1+6) 4R0C]1(1+6)

where ¢ = ,Jc;,(1+8)/p is the velocity of the mixed electro-elastic wave
propagation and & = eizl/ (€,4¢4,) is the coupling coefficient of the electrome-
chanical system, € > 0.

To derive a new a-priori estimation for the solution of (4.1)-(4.3) we shall take
the scalar product of the equation (4.1) and tw(f), where w(r) is defined as in [25]:

4

w(t) = 2 () +¥(1), ¥) = y(r-T).

r'=t+c
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In a similar manner we define the function w,(7):

wy (1) = Er(y(t’)“rﬂt’)).

=z

The reason for using the functions w(r) and w,(z) in obtaining a-priori estimation
for the problem (4.1)-(4.3) is because of their properties:

w: = —(y+y) forall Ost<t;; w(r) =0, forall t,stsT;

w(t) = wi(t;)—w (1), and w(0) = wy(t;).
Using the easily verified identity
I(Dlyi;’ W) " (Dly!’ W) | (Dly}: 'X’) —t(Dly,‘p wi) s

we get:

(Dyy, w)=T(Dyy, w,) + T(Ay, w) + (Cyp, w) = (Dyy; W) +1(p, w).

Summing the last identity over ¢ from T to a certain t, (0 < ¢, < T) and taking into
account that w(t,) = 0 we come to the energy identity:

Z oDy, y+¥)(0) + 2 Ay, w)() + z ©(Cim, w)(F) =
U
(Dyy,w)(0) + E @, w)(E). (4.6)

The latter is a key point in establishing of a new a-priori estimation for the solu-
tion of (4.1)-(4.3).

4.3. A-priori estimate for the discretized problem
We need two auxiliary functions:

1 i : 1 T
8(t) = sw(t) - 5y(1), j(1) = 3v() —zu(t)
where the function w(r) is defined as

h

() = Y wu(e) +1(0).
t'=t+t
The function v(¥) has the properties analogous to the properties of the function
w(f). Using obvious equalities:

and properties of ope
terms of the left Mﬂé
g BITHE.
2 1:(A 1Y “’)(P) =
A "Jf 2

t'=<
‘l .: ‘.'bi
3 w(Ciww) ==3
i
It allows us to rewrit
o
(h

The estimation of tl

consideration the eq

172 A
—E(Azﬂ.é
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1 T v
y= §(y+)vﬁ)+§y-t = =g, W= gHE,
the consequence of the equation (4.2):

5

Cow = —A,v+ 2 TPy +§y)

t'=t+7
and properties of operators of the scheme (4.1)-(4.3), the second and the third
terms of the left hand part of (4.6) can be transformed in the following way:

ET(AlJ’, w)(t)) = —Et(Algi,g+§)(t’) = (A2 8)(1,) + (4,8 g)(0) = ‘
= _tz
-7 A y)(#) + (A8 8)(0),

L ll tl 3

4

zr(Cm,w)=—Er(u,Czw)=zr(u,sz)—ET[M. > r(qaz+¢z)] =

t=x i Pf=x =1 "=+

1 b

3
—%(Azu, w)(ty) + (A, j)(0) - 2 r{u, 2 (g + ﬁ’az)).

B=x P g

It allows us to rewrite the identity (4.6) in the following form:

(2= S a)59) )+ s 30+ 42 00) -

2
FAam w)(1) = (D3, 3)(0) + (D3, w)(0) +

i & by
zr(cp,,w)(r’)+2r[u, S r(cpmhz)] TR |

2
The estimation of the term —%»(Azu, u)(z,) can be performed if we take into

consideration the equation (4.2):

'li2 ‘Ez 1 ~12 ef] -2 3%2 = 12 I
w2 3R R el
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where 71(1‘) = Mt+1), @, = Aoand A = 0 forr= R,. From the obvious ine-
quality (a— b)’ = %az —b” the following estimations are implied:

2 2
g (O = glw (1)) = Sy )1, 10N = gy ()] - SO,

where the function v,(¢) is defined analogously to the function w(f) by the
replacement of y for p.

Transforming the remaining terms in the right hand part of (4.7) using the
Cauchy-Schwarz inequality”, assuming that ¢, = (&,), + (E), and applying the
discrete analogue of the Gronwall lemma [6], we come to the following result:

THEOREM 4.1.  If the condition (4.5) is satisfied, then the following a-priori
estimation:

2 2
bmm@+wuwasMﬂ@n+%mpmym+§mwmxm+

r

[P0 + 3wl + [Eal + 71 +

=0

8) (4.8)

A

Al

holds for the solution of the problem (4.1)-(4.3).

Remark 4.1. In fact the condition (3.5) is the CFL-type étability condition in
this case of coupled field theory. It contains the velocity of the coupled elec-
tro-elastic wave. If & — 0 this stability condition coincides in the dominant part
with the stability condition obtained in [21].

5. DIFFERENCE SCHEME CONVERGENCE IN THE GENERALIZED
SOLUTION CLASSES

5.1. Problem for approximation errors

Let us apply the a-priori estimation (4.8) in the investigation of convergence of the
difference scheme (4.1)-(4.3). We consider here the generalized solutions from

* we also use its direct consequence which is known as the €-inequality: |(u, v)| < [lu/l|v]| =
2. 1 2
€ luf ™ + E“V" YE>0.

DIFF
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Sobolev’s spaces W5(Q7), k = 2,4 and the space V(Qr) = C(Qr) Q,(Qr) of
continuous functions with piecewise first derivatives which have square integra-
ble generalized derivatives in the continuity region.

First let us consider an approximation error of the scheme (4.1)-(4.3):

z=y-u, C=p-o
We note that the approximation error is the solution of the following opera-
tor-difference scheme:

Dlz}r+AIZ+C|C= ‘If, te (Dt

A2c+C2Z = x, te EI—)T
z=0,Dz, = v, t=0.

Then we introduce notations:

h (+0.5) ( t] - ( 1:] L
+ = = 21 = L g
u(r_z,t) u , U r,r+2 u, ulrt 3 u

and consider the error of approximation of equation (2.1) in the inner nodes of
the mesh:

- Wew w+u?
W= (pl—rpuh+c“(ru;)r—c22 4}“” + T +
& Q.+ 9;
en(re;) —e;y r2 2 (5.1

We then perform the following operations:
* apply the composition of the averaging operators 5'S' to the equation (2.1);
* calculate @, from the obtained equality;
® substitute @, into (5.1);
* use the main property of the averaging operators:

o= 009 2 W), ¢ L,
to get
V= pMu), + co(Mia), + €My3), + €1i(N 1), + €2(M35),,
where

4

r a = a =8)
e () omn = (3) )




202 R.V.N. MELNIK

(-1

(My3), = Yy3 =

I

(l:_“

(’J-.
|

u)__ dViu usu
FEAR Y -

i-1

(My3); = zh(%a)p (My3)y = 0,
j=0

(-1)

d : +@
e = 705528 ) s = (@10 - 222

5.2. Application of the Bramble-Hilbert technique

Now let us consider the case when the solution of the problem (2.1)-(2.6)
belongs to the space Wi(QT). We shall estimate the functionals 1y, k = 1,5,
using the Bramble-Hilbert lemma [2], [29], [30]. First let us consider the func-
tional m,. It is easy to see that the linear functional 1, is bounded in Wg(QT) .
Moreover,

-1
ol = M7

The linear substitution & = r + s,h, E, = ¢ + 5,7 permits us to transform the region

b {(f',t') : r—h<f'<r,t—§<t'<t+%} into the region £ = {(s;, 5,) :

-1<5,<0, <s2 < 2} It is well-known that a linear substitution does not
change the class of functions, and therefore,
-1
sMh |u :
il = M7
Further one can verify that the functional

0.5 gu

n12—_2k[u(0 0) u( 1 0) f

( 2' )dszl,where u(s)=u(r(§,), (§,))
becomes zero for all polynomials up to the first degree inclusively. That is why
according to the Bramble-Hilbert lemma we have:
=1l =
[N, = Mh "u" WAE)"

Transforming back to the variables (r, £) we get:

s M2 Gy P
1 h Wite,)”

Analogously, uammq
tions for other func

Let us consider n@
if r=Ry:

“{.
‘V‘éﬁ
i

-

where

0 = C"ll?*m

it can be shown tba;ﬁ

ri i

We consider for the s
functional in the forn

¥y :

. = 1JJ i[zr@ﬁ
I3 & = 7% |

s Ry

then its estimation
lemma: i

|Wia <
g

* The error of the nﬂ
term.
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In the same way it is not difficult to show that
k

2 1
(‘h2 + 1:2) 2 5
SM— k =3,4. .
|'112| M h (ht) “|ul ki where k=3, (5:2)

Analogously, using the Bramble-Hilbert lemma technique one can obtain estima-
tions for other functionals.

Let us consider now the error of approximation on the boundary. For example
if # = Ry;
) 2-(+D)u (+1)  w(+1)
‘I’|R0 A P R 9 — 0 .
where

1 -1
o U ) ~ _ u+u( )
G, = cpl;+cypp 2 +€19;, Og = Cppld;+Cp Y +€129;,

it can be shown that

? 2 L] £l
‘l’lRﬂ = P(TI.; ),"’ E(Thz),."' (T]13 ),,

where
y ST T
, 200%2 Ju : , sy 1¢732
Ny =3 r—dr—rui, M), =V, =r "0, "—= rcG, dr,
h R a! T T h
0 1-§ R“+5

T h
5 o o BT B3 S (+1)
Mi3), = Vi3 = = JJ; Cpdrdt -Gy .
b gy

T
2

We consider for the sake of brevity only the functional ), . If we represent the
functional in the form

P

T h T
AR ljr+§ 2Jﬂ0+i h 1J! 3 h o 1)
Wiy == ,-E[’_l % Gedr—ce(ko+§,t) dt + % GB(RO+§, r)dt—ce :
2

then its estimation can be performed with the help of the Bramble-Hilbert
lemma:

P 1
2 ) ——
[Wis| <M+ 2 (D) o], Lp = T3, (5.3)
2(e|)

* The error of the right rectangular quadrature formula is recognizable in the brackets of the first
term.
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where

= {(r, ) :Ry<r'<Ry+ E<t‘<t+;}.

h

52

Finally we should take into consideration the following:
=1

a
(i3 ); zh(ll’la) (My3)y = 0,and 0 = C1za—+czz ena—T-
i=0
The approximation error of initial conditions has the form:

Y|, = prul-Sr(rp‘;i:(O)) +|:Sr( p:‘:(z)) rpu}

T

o5 o) -a-cie].

It has been obtained taking into consideration the equation (2.1), on which we
preliminary acted by the composition of operators $"S* (where S’ is defined for
t=10).

The approximation error for the equation (4.2) is readily obtained if we act on
the equation (2.2) by the averaging operator S":

=il a6 e i =

n
(=1),
20u u+u
en[ naﬁi”(_Tf_JJ' (5.5)

The estimations of the right hand parts of (5.4), (5.5) do not cause any difficul-
ties. They are obtained by the described technique.

5.3. Convergence of the operator-difference scheme

To obtain the estimation of accuracy for the scheme (4.1)-(4.3) in cases where

the required solution belongs to Sobolev’s spaces 'W;‘(QT) ,k = 2,4, we should

take into consideration a-priori estimation obtained in the theorem 4.1, which for
the approximation error has the form:

T

el + 1k = Mol o)+ S U&7 + &%) + I+ RG}, 5.6

=0

0 (5.2), (5.3). 1
can get:

o
- |
]

(5.6) are estimate
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where

Y = (Bt (B2)n x = (M)
The right hand side of (5.6) is estimated with the help of inequalities analogous
to (5.2), (5.3). For example, using the estimations of the functionals n;, 1}, we
can get:
1

[ 2 ""EIHZ]E = { 2 Tzﬁpzhhllz 55

*=0 r=0 w,
T 1 k
k 2 2 2.2
-(h* +1°) T (h"+1") —
M th——=(ht) |u M———|u k=24,
[22 2 k) llW’{(e,,,) " s Iw/;(QT)
I'=0u),,
where
2 ¥ h > h ¥
em=ez={(r,t):r—:-2<r<r+§,t—t<t<t for r € wy,
e, = e for r =Ry,
ey = e =i (et :Rl—g<r’<R1,t—%<t’<t+§} forr=R,.

In the same way the norms of the remaining functionals of the right hand side of
(5.6) are estimated. The only exception is the estimation of the functional ] . It
does not become zero on polynomials of the first degree if the required solution
belongs to the space W;(QT) . However, it can be estimated by the Ilyin inequality
that gives an integral estimation on the near-boundary strip of the region [29].

Some applied problems in coupled dynamic electroelasticity are characterized
by the fact that the solution derivatives have a discontinuity of the first kind.
Thus we shall consider the case when the solution of the problem (2.1)-(2.6)
belongs to the space V(Qr). The a-priori estimation (5.6) for the error of the
scheme remains true in this case as well, and

T T

T
Sdel = 3+ $ w0+ T T sE 0, i=1,2,
=0 r=0 reo, r=0 reoy/w,
where w,, are the points of the mesh, the neighborhood of which contain points of
discontinuity of the first derivatives of the solution.

In the domain of continuity of the first derivatives, corresponding functionals
which occur in the approximation error of 1 and  have been estimated earlier. In
the points of their discontinuity the functional are bounded. So far, as the total
number of points w, (where the first derivatives have discontinuity) is finite, then
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r

OED KEL(F, ) = O(t+h).
=0 r’Em)7

As a result we have proved the following

THEOREM 5.1. Under the stability condition (4.5) the solution of the difference
scheme (4.1)-(4.3) converges to the generalized solution of the coupled dynamic
problem of electroelasticity at a rate of O(h* + t*). The following accuracy esti-
mations

lzll 1) + 1€l oy = M +7°), (5.7)

hold for k = % if the solution of the problem (2.1)-(2.6) belongs to the space
V(Qr) and for k = '% if the solution is from the class W5(Qy), p = 2, 4.

Remark 5.1. When the equations (2.1) and (2.2) are coupled only by the state
equations (2.5), but there is no connection through the boundary conditions for
stresses, then the accuracy estimation (5.7) can be improved’. In such a
semi-coupled case the convergence of the difference scheme with the second
order (to the generalized solution from W%(QT), can be proved in a weaker than
L¥w) metric [5]. These issues will be addressed elsewhere.

Remark 5.2. Similar results have also been obtained in the coupled theory of
thermoelasticity [15] where mixed parabolic and hyperbolic operators are non-
separable globally.

6. APPLICATIONS OF THE OPERATOR-DIFFERENCE SCHEME
TO COUPLED PROBLEMS IN DYNAMIC ELECTROELASTICITY

Studies in electromechanical interactions are important in many areas of applica-
tions including engineering and biophysics [1], [7], [8]. An increasing range of
applications of piezoelectrics in semiconductors and intelligent structures stimu-
lates a greater interest in coupling effects between mechanical and electric fields
[3]. [4], [10]. However, many problems arising in this field require mathematical
tools that allow treatment of steep gradients and even discontinuities of the solu-
tions using efficient numerical procedures.

Since many technical devices work in the regime of steady-state harmonic
oscillations, this area of mathematical modelling is well elucidated in the litera-

* Such an improvement is possible, for example, when displacements rather than stresses are given
on the boundary.
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ture and continues to attract the attention of researchers from around the world.
Nevertheless, many applications require by necessity the investigation of cou-
pled electromechanical fields that have nonstationary rather than steady-state
character. Such problems are typical in the analysis of transient processes in var-
ious technical devices.

The other essential area of study in the coupled electroelasticity field is based
on some assumptions simplifying the original coupled problem. Many methods
for the solutions of dynamic problems in electroelasticity are based on thickness
averaging* and the use of the Kirchhoff-type hypothesizes. Such simplifications
may not be appropriate for thin structures which are important in many applica-
tions. A typical example of this type is thin hollow piezoceramic cylinders. They
are widely used as active elements in many technical devices. Thin hollow cylin-
ders may provide a basis for investigation of electromechanical processes in
bones and other biological tissues. Such investigations are extremely important
since there is evidence that the piezoelectric effect plays an essential role in a
feedback mechanism that controls activity of biological cells (see [7], [8] and ref-
erences therein). The above examples emphasize that in many applications con-
sistent solutions of the coupled nonstationary problem of electroelasticity are
required. Moreover, numerical methods provide a natural and the most effective
way to find such solutions.

As an example, we consider the process of coupled electroelastic oscillations
of a hollow piezoceramic cylinder with radial preliminary polarization. When the
thickness-to-length ratio is small the model (2.1)-(2.6) gives an appropriate
description of the underlying physical processes. It is assumed that there are no
stresses on the exterior and interior surfaces, and a given potential difference 2V
is maintained. At the initial moment of time we assume the unexcited state of the
piezoceramic PZT-4. After scaling we have the following values of coefficients:

2V=1,p=1,R;=1,¢,;=0.82734, ¢;, = 0.53453, ¢ = 1,
ey = 0.54027, e, = - 0.18605, €, = 1.
The dynamics of stresses and displacements were investigated with respect to
cylinder thickness. In all cases the stability condition (4.5) maintained. Principal
conclusions from numerical experiments can be summarized as follows.

* Using the described model we computed stresses and displacements for cyl-
inders of small thickness. In general, due to the inconsistency of initial and
boundary conditions at the initial moment of time, the stresses function is discon-
tinuous. Discontinuities prevent us from using schemes justified for excessive
a-priori smoothness assumptions. Hence, the analysis performed in sections 3-5
becomes a necessary part of the justification of the computational model in this

* Usually, for mechanical components of electroelastic fields.
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case. The stresses function reflects the process of contraction (extension) of
small-thickness cylinders. Figures 1 and 2 show displacements and stresses for
cylinders of different thickness /" at the moment of scaled time ¢ = 10. When the
thickness increases, oscillations in stresses become essential. Though in some
cases smoothing procedures may be applied, further increase of thickness indi-
cates that the use of the higher dimensional models is required. We note that dis-
placements remain a smooth function when thickness is increased. Qualitatively,
quite similar pictures are observed in non-coupled electroelasticity. It should be
noted however, that a comparison of absolute values of displacements and
stresses for circular and radial polarisations shows that in the latter case they can
essentially exceed corresponding values for circular polarization' (see [17, 22] and
references therein). This explains our interest in the investigation of coupling
effects in the case of radial preliminary polarization.

ofF 2f
-2 -
! 1
'g e -
; q -I
-8 -
=10
2
_15 " M " "
.86 o0.88 0.9 0.92 0.94 0.96 0.88 1

FIGURE 1 Radical stresses (curve 1) and displacements (curve 2) at ¢ = 10 (radial preliminary
polarisation ; thickness [ = 0.13)

N I L i
0.82 0.93 0.04 0.95 0.96 0.97 0.88 0.09 1
Spatial coordinate

FIGURE 2 Radical stresses (curve 1) and displacements (curve 2) at ¢ = 10 (radial preliminary
polarisation : thickness [ = 0.08)

* Here I denotes scaled thickness of the cylinder.
F For example, for the cylinder with / = 0.13 an increase is bigger by a factor 8-9.
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* Investigating the dependency of a discontinuous step-function of stresses in
time at the middle section (R, + R;)/2, we also observe that with decreasing cylin-
der thickness, the amplitude of thickness oscillation increases (Fig. 3, 4). In a
qualitative manner, this effect is expected from uncoupled electroelasticity.

& o N 2

Stresses in the middie section

o &

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Temporal coordinate

FIGURE 3 Time-dependency of stresses in the middle section of the cylinder (radial preliminary
polarization; thickness [ = 0.13)

i " A .
0.08 o1 CED) 0z 0285 0.3 0.35 0.4 0.48 os
Tempormal coordinate

FIGURE 4 Time-dependency of stresses in the middle section of the cylinder (radial preliminary
polarization; thickness / = 0.08)

We also analyse the dynamics of displacements in time on the external sur-
face of cylinders (Fig. 5, 6). The underlying processes are important in the
design of technical devices which include a cylindrical vibrator". Figures are |
presented for the interval of the scaled time 0 < 0 < 10. As for stresses, with
decreasing thickness, we observe an increase in amplitude of oscillations. As
we pointed out, an increase of amplitude for cylinders preliminary polarized '
radially is much greater [17, 22]. Figures 5 and 6 show a large increase in
amplitudes of oscillations for thin cylinders preliminarily polarized radially.

* Hydro-acoustics applications, including cylindrical acoustic vibrators, give typical examples of
this type.
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4 5 =)
Temporal coordinate

FIGURE 5 Time-dependency of displacements on the external surface of the cylinder (radial pre-
liminary polarization; thickness 1=0.13)

“ ]
Tamporal coordinate

FIGURE 6 Time-dependency of displacements on the external surface of the cylinder (radial pre-
liminary polarization; thickness | = 0.08)

We conclude that the anisotropy of material and inter-influence of elastic and
electric fields in the non-stationary case essentially influence the characteristics
of designed technical devices. A possibility of discontinuities and rapid changes
of computed functions require the development of appropriate mathematlcal
tools in justifications of underlying numerical procedures.

7. CONCLUSIONS AND FUTURE DIRECTIONS

Mathematical modelling in coupled field theory requires approaches which can
be applied even if a solution of the problem does not possess an excessive
smoothness imposed as an a-priori assumption. In this paper we have developed
such an approach with respect to problems arising from nonstationary electroe-
lasticity. We explicitly derived the stability condition for the operator-difference
scheme applied to the numerical solution of the problem. We also proved conver-
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gence of such a solution to a generalized solution of the original problem.

Depending on the smoothness of the latter we obtained a scale of accuracy esti-

mations. Such scales give important a-priori characteristics of the computational

efficiency of underlying numerical procedures.
Finally, we would like to mention two directions for possible development of
the technique presented in this paper.

* A similar approach can be applied to more general mathematical models of
coupled field theory. A generalization might be obtained for dynamic prob-
lems of thermoelectroelasticity. Along this line the importance of a connec-
tion between variational principles and computational models for new areas
of applications was emphasized in [31, 327
Applications of nonlocal models in semiconductor device theory and climate
modelling seem to be quite promising candidates for future investigations in
this field.

* Recently, we attempted to approach some problems in nonsmooth (including
stochastic) optimal control theory on the basis of using Steklov’s operators.
In particular, we have derived a “local” optimality principle which allowed us
to reformulate the original problems in such a way that the application of
some ideas presented here seems to be encouraging. Some results in this field
are published in [12], [13], [18], [19].
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