First principles studies on the structural, elastic, electronic properties and heats of formation of Mg–AE (AE = Ca, Sr, Ba) intermetalics

Zhiwen Yang a, Jinglian Du b, Bin Wen b,*, Chuanzheng Hu a, Roderick Melnik c,d

a Jiangsu Xuzhou Construction Machinery Research Institute, Xuzhou 221004, China
b State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
c M²Net Lab, Wilfrid Laurier University, Waterloo, 75 University Ave. West, Ontario N2L3C5, Canada
d Ikerbasque, Basque Foundation for Science and BCAM, Bilbao 48011, Spain

A R T I C L E I N F O

Article history:
Received 20 June 2012
Received in revised form 25 August 2012
Accepted 1 September 2012
Available online 9 October 2012

Keywords:
A. Intermetallics, miscellaneous
B. Britteness and ductility
B. Thermodynamic and thermochemical properties
E. Ab-initio calculations

A B S T R A C T

First principles calculations have been performed to study the structural, heats of formation, elastic properties, and densities of states of eight Mg–AE (AE = Ca, Sr, Ba) intermetallic compounds. The obtained results indicate that with increasing atom weight and concentration of AE, the bulk moduli decrease monotonously, and the larger the electronegativity difference is, the smaller the elastic modulus would be. Based on the ratios of shear moduli to bulk moduli, it has been found that Mg2Ca, Mg38Sr9, Mg23Sr6, Mg2Sr, Mg17Ba2, Mg23Ba6, and Mg2Ba behave in a brittle manner, and Mg17Sr2, Mg23Sr6 and Mg2Ba behave in a ductile manner. Our calculations of the densities of states, heats of formation, and elastic constants of all the eight Mg compounds indicate that they are all conductors, thermodynamically and mechanically stable.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The study of Mg intermetallics has been attracting much attention because of their important applications in the automobile and aerospace industries [1–3]. Among the Mg based intermetallics, Mg–AE (AE = Ca, Sr, Ba) systems intermetallic compounds have generated significant interests over the past few decades [4–7]. The phase diagrams of Mg–Ca, Mg–Sr, and Mg–Ba systems have been investigated, and eight stable intermetallics, such as Mg2Ca, Mg17Sr2, Mg38Sr9, Mg23Sr6, Mg2Sr, Mg17Ba2, Mg23Ba6 and Mg2Ba, have been found [8–10], and these intermetallics can be emerged as promising candidate materials for transportation, aeronautical and helicopters [11,12]. Due to their importance, various studies have been undertaken of crystal structures and lattice parameters [10,11,13–17], as well as thermodynamic properties [2–9] for the eight Mg intermetallic compounds. Moreover, investigations focused on the elastic properties for Mg2Ca, Mg23Ba6 and Mg2Ba, and electronic properties for Mg2Ca have also been reported. The results on electronic properties of other seven Mg intermetallic compounds, considered in this work, have still been lacking. In the present paper, by means of first principles computational method based on density functional theory, we have systematically studied the structural, heats of formation, elastic properties, as well as electronic properties of all the eight Mg intermetallic compounds.

2. Computational method

In this work, eight Mg–AE intermetallic compounds have been investigated by using first principles calculations based on the density functional theory and plane-wave pseudopotential techniques as incorporated in the CASTEP package [20,21] and the Vienna ab initio simulation package (VASP) [22]. In CASTEP calculations, the ultrasoft pseudopotentials (UP) have been employed for the 2p63s2, 3p64s2, 4s24p65s2, and 5s25p66s2 atom configurations of Mg, Ca, Sr, and Ba, respectively [23]. Exchange–correlation interaction was described by using the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerh of parameterization [24]. The k point separation in the Brillouin zone of the reciprocal space is 0.04 nm−1, that is, 5 ⋅ 5 ⋅ 2, 3 ⋅ 3 ⋅ 2, 3 ⋅ 3 ⋅ 3, 4 ⋅ 4 ⋅ 2, 3 ⋅ 3 ⋅ 3, 3 ⋅ 3 ⋅ 3, 4 ⋅ 4 ⋅ 2 for Mg2Ca, Mg17Sr2, Mg38Sr9, Mg23Sr6, Mg2Sr, Mg17Ba2, Mg23Ba6, and
Mg2Ba, respectively. An energy cut-off of 400 eV was used. The reliability of this method was demonstrated in our previous works [25–28]. For VASP calculations, the ion–electron interaction has been described by the projector-augmented wave (PAW) potentials [29]. A plane-wave basis energy cut-off of 500 eV was used, and the Brillouin zone of the cells has been sampled by $4 \times 4 \times 4$ k-point mesh for Mg2Ca, Mg17Sr2, Mg23Sr6, Mg2Sr, Mg17Ba2, Mg23Ba6, Mg2Ba and $3 \times 3 \times 2$ k-point mesh for Mg38Sr9.

3. Results and discussion

3.1. Structural properties

The initial crystal structures of the eight Mg intermetallic compounds have been built based on the experimental crystallographic data [8–10,13–15]. Using both GGA-UP (CASTEP) method and GGA-PAW (VASP) method, their lattice parameters and internal coordinates were optimized. Calculated lattice parameters in comparison with the available experimental data and their corresponding crystal structures are given in Table 1. It can be seen that the calculated data are in a good agreement with the available experimental data. As well as the comparison of the calculated results from GGA-UP (CASTEP) method and GGA-PAW (VASP) method shows that the lattice constants are very close to each other. These results pointing that the computational scheme utilized in this work is reasonable. Fig. 1 depicts the calculated mass densities using GGA-UP (CASTEP) method and experimental values of the eight Mg intermetallic compounds. As can be seen from Fig. 1, all the data points lie close to the center dot line.

3.2. Thermodynamic stability and heats of formation

By using Formula (1) below, heats of formation of Mg–AE (AE = Ca, Sr, Ba) systems intermetallic compounds can be calculated by using the ground state total energies of the eight Mg compounds and pure Mg, Ca, Sr and Ba:

$$E_{\text{form}}^{\text{Mg}_{m}\text{AE}_{n}} = \frac{E_{\text{tot}}^{\text{Mg}_{m}\text{AE}_{n}} - (mE_{\text{solid}}^{\text{Mg}} + nE_{\text{solid}}^{\text{AE}})}{m + n}$$

where $E_{\text{tot}}^{\text{Mg}_{m}\text{AE}_{n}}$ is the total energy of a Mg$_m$AE$_n$ primitive cell that includes m Mg atoms and n AE atoms with equilibrium lattice parameters, $E_{\text{solid}}^{\text{Mg}}$ and $E_{\text{solid}}^{\text{AE}}$ are the total energy of a Mg atom and an AE (AE = Ca, Sr, Ba) atoms in their stable structures.

Table 2 presents the calculated heats of formation of the eight Mg intermetallic compounds using both GGA-UP (CASTEP) method and GGA-PAW (VASP) method together with their available theoretical and experimental data [30–37]. These results have also been depicted in Fig. 2. It can be seen that the difference between the CASTEP calculated data and the VASP calculated data for Mg2Ca, Mg17Sr2, Mg38Sr9, Mg23Sr6, Mg2Sr, Mg17Ba2, Mg23Ba6, and Mg2Ba is less than 0.5–8.7%, which presents a good agreement between calculated data by using CASTEP and VASP.

Table 1

<table>
<thead>
<tr>
<th>Phase</th>
<th>At.% AE</th>
<th>Pearson symbol</th>
<th>Space group</th>
<th>Prototype</th>
<th>Lattice parameters (Å)</th>
<th>Mass density (kg/m3)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg2Ca</td>
<td>33.3</td>
<td>hP12</td>
<td>P6$_3$/mmc</td>
<td>MgZn2</td>
<td>6.261 10.105</td>
<td>1716.94</td>
<td>GGA-UP(CASTEP)</td>
</tr>
<tr>
<td>Mg17Sr2</td>
<td>10.5</td>
<td>hP38</td>
<td>P6$_3$/mmc</td>
<td>Ni$_{17}$Th$_2$</td>
<td>6.253 10.144</td>
<td>1715.21</td>
<td>GGA-UP(CASTEP)</td>
</tr>
<tr>
<td>Mg38Sr9</td>
<td>19.1</td>
<td>hP94</td>
<td>P6$_3$/mmc</td>
<td>Mg$_{38}$Sr$_9$</td>
<td>10.597 10.284</td>
<td>1954.96</td>
<td>GGA-UP(CASTEP)</td>
</tr>
<tr>
<td>Mg23Sr6</td>
<td>20.7</td>
<td>cF116</td>
<td>Fm$ar{3}$m</td>
<td>Mn$_{23}$Th$_6$</td>
<td>10.514 10.274</td>
<td>2111.46</td>
<td>GGA-UP(CASTEP)</td>
</tr>
<tr>
<td>Mg2Sr</td>
<td>33.3</td>
<td>hP12</td>
<td>P6$_3$/mmc</td>
<td>MgZn2</td>
<td>10.542 27.978</td>
<td>2111.46</td>
<td>GGA-UP(CASTEP)</td>
</tr>
<tr>
<td>Mg17Ba2</td>
<td>10.5</td>
<td>hR57</td>
<td>I$_h$Th$_2$</td>
<td>Zn$_{17}$Th$_2$</td>
<td>10.550 10.356</td>
<td>1963.26</td>
<td>GGA-UP(CASTEP)</td>
</tr>
<tr>
<td>Mg23Ba6</td>
<td>20.7</td>
<td>cF116</td>
<td>Fm$ar{3}$m</td>
<td>Mn$_{23}$Th$_6$</td>
<td>10.440 10.291</td>
<td>2171.89</td>
<td>GGA-UP(CASTEP)</td>
</tr>
<tr>
<td>Mg2Ba</td>
<td>33.3</td>
<td>hP12</td>
<td>P6$_3$/mmc</td>
<td>MgZn2</td>
<td>10.500 28.251</td>
<td>2171.89</td>
<td>GGA-UP(CASTEP)</td>
</tr>
</tbody>
</table>
observed from Tables 2 and 4 that, the Mg₂Ca compound has the smallest absolute value of heat of formation and the largest bulk modulus. This complies with the fact that the more negative heat of formation is, the larger value of bulk modulus would be, as pointed out by Zhang et al. [2].

Table 2
Calculated and experimental heats of formation for Mg–AE system intermetallic compounds.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Heats of formation (kJ/mol atoms)</th>
<th>Experiment</th>
<th>Other theories</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGA-UP (CASTEP)</td>
<td>GGA-PAW (VASP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg₁₇Ba₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg₃8Sr₉</td>
<td>-5.72</td>
<td>-5.60</td>
<td>-4.80 [4]</td>
</tr>
<tr>
<td>Mg₃8Sr₉</td>
<td>-6.86</td>
<td>-6.74</td>
<td>-6.27 [4]</td>
</tr>
<tr>
<td>Mg₂Sr</td>
<td>-7.84</td>
<td>-8.52</td>
<td>-7.74 [4]</td>
</tr>
<tr>
<td>Mg₂Sr</td>
<td>-11.02</td>
<td>-11.34</td>
<td>-10.62 [4], -7.95 [6]</td>
</tr>
<tr>
<td>Mg₂₃Ba₆</td>
<td>-6.80</td>
<td>-6.76</td>
<td>-6.60 [2]</td>
</tr>
<tr>
<td>Mg₂₃Ba₆</td>
<td>-8.36</td>
<td>-8.02</td>
<td>-7.50 [2]</td>
</tr>
<tr>
<td>Mg₂₃Ba₆</td>
<td>-9.50</td>
<td>-9.00</td>
<td>-8.50 [2]</td>
</tr>
</tbody>
</table>

Further confirms that the computational scheme utilized in this work is credible. Thus, we just compare the CASTEP calculated data with the experimental data. For the Mg₃Ca compound, the calculated heat of formation is -13.03 kJ/mol atoms, which is in a better agreement with most of the reported results but different from Pyagai et al. [37] value of -20.97 kJ/mol atoms. It was demonstrated that the result obtained by Pyagai et al. may not be reliable. For Mg–Sr system compounds, the calculated heats of formation of Mg₁₇Sr₂, Mg₃₈Sr₉, Mg₂₃Sr₆ and Mg₂Sr are -5.72, 6.86, 7.84 and -11.02 kJ/mol atoms, which is in accordance with the heats of formation calculated by Zhong et al. [4]. For Mg–Ba system compounds, the calculated heats of formation of Mg₁₇Ba₂, Mg₂₃Ba₆ and Mg₂Ba are -6.80, -8.36 and -9.50 kJ/mol atoms. The results are consistent with the calculated heats of formation for Mg–Ba system compounds made by Zhang et al. [2]. For the eight Mg intermetallic compounds considered in this work, the calculated heats of formation are all negative, indicating that they are all thermodynamically stable. Moreover, it can be observed from Tables 2 and 4 that, the Mg₃Ca compound has the most negative heat of formation and the largest bulk modulus. This complies with the fact that the more negative heat of formation is, the larger value of bulk modulus would be, as pointed out by Zhang et al. [2].

3.3. Elastic properties and mechanical stability

Table 3 shows the GGA-UP (CASTEP) method calculated elastic constants Cᵢⱼ (GPa) and bulk moduli of the eight Mg intermetallic compounds, together with their available experimental and theoretical data. It can be seen that, for Mg₃Ca, Mg₂₃Ba₆, and Mg₃Ca, the calculated elastic constants are in a better agreement with the previous experimental and theoretical data [1,18]. No elastic constants have been reported for other five Mg intermetallics. Based on the calculated elastic constants, mechanical stability of the eight intermetallics has been analyzed. For the eight Mg intermetallic compounds, it was found that Mg₂₃Sr₉ and Mg₂₃Ba₆ have cubic structures, Mg₃Ca, Mg₁₇Sr₂, Mg₃₈Sr₉, Mg₂Sr, and Mg₂Ba have hexagonal structures, and Mg₁₇Ba₂ has a trigonal structure.

For Mg₂₃Sr₉ and Mg₂₃Ba₆ compounds, all elastic constants are larger than zero, namely, C₁₁ > 0, C₄₄ > 0, C₁₁−C₁₂ > 0, C₁₁+2C₁₂ > 0, which is consistent with the stability condition for cubic structure [38], indicating that the two intermetallic compounds are elastically stable. For Mg₃Ca, Mg₁₇Sr₂, Mg₃₈Sr₉, Mg₂Sr, and Mg₂Ba compounds, the mechanical stability restrictions for hexagonal structures are as follows [39,40]: C₁₁ > 0, C₄₄ > 0, C₁₁−C₁₂ > 0, (C₁₁ + C₁₂) C₃₃−2C₁₃ > 0. As shown in Table 3, the elastic constants of all the five hexagonal structures can comply with the stability criteria, and these results imply that all the five intermetallics are mechanically stable. As for Mg₁₇Ba₂, the...
mechanical stability criteria for trigonal structure can be expressed as [41]:
\[
\begin{align*}
C_{11} &> 0, \\
(C_{11} + C_{12}) &> 0, \\
C_{44} &> 0.
\end{align*}
\]
As can be seen from Table 3, the elastic constants of Mg17Ba2 satisfy all the above constraints, which indicate that Mg17Ba2 is mechanically stable.

Table 4 presents calculated polycrystalline bulk moduli (\(K\)), shear moduli (\(G\)), Young’s moduli (\(E\)), and Poisson’s ratio (\(\nu\)) by using the Voigt, Reuss, and Hill (VRH) approximations. The relationship between the bulk moduli and concentration of AE has also been depicted in Fig. 3. As we can see from Fig. 3, with increasing concentration of AE (in atoms%), the bulk moduli decreases monotonously for the Mg–AE system intermetallic compounds. This can be explained by the calculated bulk moduli of 35.0, 17.3, 12.1, and 8.7 GPa for pure Mg, Ca, Sr, and Ba. With increasing atom weight of AE, the bulk moduli decrease gradually for Mg–Ca, Mg–Sr and Mg–Ba intermetallic compounds. It was considered that the increase of atom radius of AE with increasing atom weight of AE is the main reason for the decrease of the bulk moduli. Moreover, this trend is in accordance with the calculated results for Mg–Ca and Mg–Ba intermetallic compounds performed

![Fig. 3. Calculated bulk moduli of Mg–AE system intermetallic compounds.](image1)

![Fig. 4. The relationship between bulk moduli and shear moduli with electronegativity difference of AE versus Mg.](image2)
by Ganeshan et al. [1]. Frantsevich et al. indicated that the hardness and strength of materials are related to their elastic moduli, and the general trend is the larger the moduli, the harder the materials [43]. It was found that the hardness of Mg–Ca system intermetallic compounds is larger than that of Mg–Sr and Mg–Ba systems intermetallics due to their larger elastic moduli. Fig. 4 presents the relationship between bulk moduli and shear moduli with electronegativity difference of AE versus Mg. Using the Pauling scale [44], the electronegativity of Mg, Ca, Sr, and Ba are 1.31, 1.00, 0.95, and 0.89, respectively. As we can see from Fig. 4, the bulk moduli and shear moduli of Mg2Ca, Mg2Sr, and Mg2Ba decrease with increasing the electronegativity difference between AE and Mg. Thus, it can be concluded that the larger the electronegativity difference is, the smaller the elastic modulus would be.
Based on the values of elastic moduli, the ratio of shear moduli to bulk moduli (G/K) has been utilized to analyze their brittleness and ductility properties; calculated G/K values are presented in Table 4. Pugh [45] has proposed that if G/K ratio is larger than 0.57, metals behave in a brittle manner, otherwise the material are considered as ductile, and this criterion has been demonstrated successfully in intermetallic compounds [1,46–48]. The lower the value of G/K, the more ductile the material would be. As it can be seen from Table 4, the G/K value of Mg2Ca is 0.61, indicating that Mg2Ca is brittle. This result is in a good agreement with the reported results obtained by Sumer et al. [18] and Ganeshan et al. [1]. For the Mg–Sr system intermetallic compounds, the G/K ratios of Mg38Sr9 and Mg2Sr are larger than 0.57, and the G/K values of Mg17Sr2 and Mg23Sr6 are smaller than 0.57. These results indicate that Mg38Sr9 and Mg2Sr behave in a brittle manner, and Mg17Sr2 and Mg23Sr6 behave in a ductile manner. For the Mg–Ba system intermetallic compounds, the values of G/K ratio for Mg27Ba2 and Mg23Ba6 are larger than 0.57, implying that Mg27Ba2 and Mg23Ba6 are brittle. For the Mg6Ba, the G/K ratio is 0.49, indicating that Mg6Ba is ductile. It is noted that the brittle behavior of Mg27Ba2 is in accordance with the reported results by Ganeshan et al., while the ductile behavior of Mg23Ba6 is different from the earlier reported results [1]. As for all the considered eight Mg intermetallic compounds, the Mg2Ba2 is the most brittle, and the Mg23Sr6 is the most ductile.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No.s 51121061, 51310012) and the Key Basic Research Program of Hebei Province of China (No. 12961535D). R. M. acknowledges the support from the NSERC and CRC programs, Canada.

References

Electronic structures

The partial density of states (PDOS) of the eight Mg intermetallic compounds, which are obtained using CCA-UP (CASTEP) method, are shown in Fig. 5. Zero energy in the plotted figures corresponds to the Fermi energy. It can be seen that the densities of states of Mg6Ca are dominated by Mg s, p-states and Ca d-states, which is in accordance with the calculated results performed by Jaswal et al. [19]. For Mg–Sr system compounds, at Fermi energy, the Mg38Sr9 has the largest value of densities of states, and the value of densities of states for Mg38Sr9 is the smallest. Mg s, p-states and Sr d-states contribute to the densities of states. For the Mg–Ba system compounds, Mg32Ba6 has the largest density of states, and the value of densities of states for Mg32Ba6 is smaller than the corresponding values for Mg17Ba2. The densities of states are mainly dominated by Mg s, p-states and Ba d-states. Therefore, we can find that the densities of states of Mg – AE (AE = Ca, Sr, Ba) systems intermetallic compounds are all mainly having the Mg s, p-states and AE d-states as major contributors. In addition, the values of the densities of states at Fermi energy for Mg2Ca, Mg17Sr2, Mg38Sr9, Mg23Sr6, MgSr, Mg17Ba2, Mg23Ba6 and Mg2Ba are 8.9, 19.7, 58.64, 15.8, 10.7, 11.7, 18.7, and 11.4, respectively. These results indicate that the eight Mg intermetallic compounds are all conductors.

Conclusions

By using first principles calculations based on density functional theory, we have studied the structural, heat of formation, elastic properties, and densities of states of eight Mg – AE (AE = Ca, Sr, Ba) systems intermetallic compounds. Calculated results indicate that the bulk moduli decrease monotonously with increasing atom weight and concentration of AE, and the bulk moduli and shear moduli of Mg2Ca, Mg6Sr, and Mg6Ba decrease with increasing the electronegativity difference between AE and Mg. Ductility and brittleness have been analyzed based on the Pugh’s criteria. It was found that Mg2Ca, Mg38Sr9, Mg6Sr, Mg6Ba, Mg27Ba2 and Mg23Ba6 are brittle, and Mg17Sr2, Mg38Sr9, and Mg2Ba are ductile. By investigating the calculated densities of states, heats of formation, and elastic constants of all the eight Mg compounds, it was observed that they are all conductors, thermodynamically and mechanically stable.