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Cell cycles are fundamental components of all living organisms and their systematic
studies extend our knowledge about the interconnection between regulatory, metabolic,
and signaling networks, and therefore open new opportunities for our ultimate efficient
control of cellular processes for disease treatments, as well as for a wide variety of biomed-
ical and biotechnological applications. In the study of cell cycles, nonlinear phenomena
play a paramount role, in particular in those cases where the cellular dynamics is in
the focus of attention. Quantification of this dynamics is a challenging task due to a
wide range of parameters that require estimations and the presence of many stochastic
effects. Based on the originally deterministic model, in this paper we develop a hierar-
chy of models that allow us to describe the nonlinear dynamics accounting for special
events of cell cycles. First, we develop a model that takes into account fluctuations of
relative concentrations of proteins during special events of cell cycles. Such fluctuations
are induced by varying rates of relative concentrations of proteins and/or by relative
concentrations of proteins themselves. As such fluctuations may be responsible for qual-
itative changes in the cell, we develop a new model that accounts for the effect of cellular
dynamics on the cell cycle. Finally, we analyze numerically nonlinear effects in the cell
cycle by constructing phase portraits based on the newly developed model and carry
out a parametric sensitivity analysis in order to identify parameters for an efficient cell
cycle control. The results of computational experiments demounstrate that the metabolic
events in gene regulatory networks can qualitatively influence the dynamics of the cell
cycle.

Keywords: Cell Cycle Models and Control; Complex Dynamic Systems; Stochastic
Effects; Bio-nanotechnology; Cell Engineering and Disease Treatment; Spatio-temporal
Interactions; Systems Biology and Systems Science; Coupled Phenomena in Biological
Systems; Multiscale Processes.

1. Introduction

Cell cycles are fundamental components of life. They are one of the most important
biological processes that provide a key to our knowledge of a large number of
genes and networks of protein interactions.! They provide an example of complex
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dynamic systems? in the area of biological sciences in general and systems biology in
particular. Their studies assisted us in a better understanding of the multifunctional
and multiscale components involved in fundamental disease processes, and finally
led us to a realization that an integrated coupled approach in the dynamic analysis
of signaling, metabolic and regulatory networks is required.?

Cell cycles consist of growth and division of cells which should be in balance for
producing a homeostasis of cell size, for responding adequately to the availability of
proteins and nutrients, and for other key activities of living organisms. All biological
processes, phenomena, and systems are cell-cycle dependent and the understanding
of this dependency and its ultimate control is one of the most fundamental problems
in biological sciences. Indeed, as the key elements in protein interactions, cell cycles
provide an elementary dynamics mechanism for all that lives. Extensive research
into their influence on neuronal, cardiovascular, and other activities confirm that
their understanding and control is critical to disease treatment. At the same time, it
is now understood that ultimately a systems science approach is needed for study-
ing cell-cycle associated (coupled) processes as the availability of certain critical
proteins can alter substantially or even freeze the cell cycles.

The eukaryotic cell is a key example of a nanomachine where cell cycles are
the key to its functioning. During cell cycles, eukaryotic cells duplicate all of their
components and separate them into two daughter cells. Every cell cycle is divided
into four phases: G1 (gap) phase in which the size of the cell is increased by pro-
ducing RNA and synthesizing protein, S phase in which DNA is replicated, G2
(gap) phase in which the cell continues to produce new proteins and to grow in
size, and M (mitosis) phase in which DNA is separated and cell division takes
place.*5 The cell cycle involves different biological events on different spatial and
temporal scales. It is a complex multiscale process, and although processes with
multiple scales appear frequently in many branches of science and engineering,5 10
the cellular processes have their own specifics and they are always part of a bigger
picture. It is known that the activity level of the M-phase Promoting Factor (MPF),
a heterodimer which consists of a catalytic (Cde2) and a regulatory cyclin subunit
(Cdel3),>11412 distinguishes the cell cycle between mitosis and interphase. When
the amount of cyclin Cdcl3 attains a certain value, MPF activity increases abruptly
and the cell cycle enters M (mitosis) phase. The amount of cyclin Cdel3 needed
for the cell cycle to enter M (mitosis) phase is larger than the amount of cyclin
Cdel3 needed for the cell cycle to stay in M phase. This keeps the cell cycle out of
the G2 phase. Such a hysteresis type switching behavior plays an important role in
living cells.

Nonlinear phenomena such as hysteresis have been attracting an inreasing atten-
tion of researchers studying biological organisms.®1# 2% Although it has been rec-
ognized for a long time that stochastic models provide a key tool in the analysis of
many systems in biology?»?? and in the transcriptional regulation modeling,?3-35
most models for cell hysteresis and related nonlinear phenomena, discussed so far
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in the literature, are based on deterministic models.®1517:19:36 In this paper, we
analyze such nonlinear phenomena with both deterministic and stochastic models,

tocusing on the cell cycle dynamics, and construct phase portraits of MPF based
on the associated models.

During the last decade, substantial research efforts have been directed towards

the development of improved models for cell cycles (see, e.g. Refs. 5, 12, 19, 38-48,
among many others). Recall, for example, that Novak and Tyson, who presented
their deterministic model of regulatory genetic networks for a cell cycle, based their
consideration on a system of differential-algebraic equations. The authors provided
parameter estimations for their model based on experimental observations® and the
analysis of a model for eukaryotic cell-cycle regulations has recently been carried
out.*? Although stochastic mathematical models are well accepted for the model-
ing of other components of life, as well as a variety of complex physical systems
with Monte Carlo type simulations,®>*! nonlinear stochastic mathematical mod-
els for cell cycles are at the beginning of their development. Recall that in the
description of the dynamics of DNA molecules®® and similar systems® the use
of stochastic mathematical models is already quite extensive, while the develop-
ment of stochastic models describing time-dependent RNA silencing phenomena,
RNA-based nanostructures for scaffolding and drug delivery®® as well as protein
interactions has been underway for quite some time. By now, it is clear that due

to activities associated with synthesis and degradation by various reactions among

other things, we should also account for stochasticity in constructing mathematical
models for the dynamics of cell cycles. The Novak-Tyson model has been extended
by Steuer who added stochastic noise terms corresponding to fluctuations in living
systems.'? Since then, a number of authors emphasized the importance of stochas-
tic models in this field!0:37:56-58 ith mounting evidence pointing to the fact that
accounting for stochasticity may lead to qualitatively different behavior of cells. For
example, the application of a stochastic model in Battogtokh and Tyson®? led to a
conclusion that in the presence of noise, birthythmicity may lead to miotic arrest.
Such new observations are critical in treatment of malfunctioning cells.

In the present paper, a general stochastic framework that allows us to treat living
cell fluctuations is proposed. Our majer focus is given to three specific stochastic
models containing fluctuations related to varying rates of relative concentrations
of proteins when the magnitudes of the concentrations exceed a certain threshold.

The proposed hierarchy of mathematical models can deal with increasing levels of

fluctuations, taking into account the effect of cellular dynamics on the cell cycle.
The paper is organized as follows. After providing a systems biology perspec-
tive of the development of mathematical models for cellular processes in Sec. 2,
in Sec. 3, we review the deterministic Novak-Tyson model and develop a general
stochastic framework for modeling cell cycle dynamics. We complete this section
with providing a general formulation of a model that takes into account the effect
of cellular dynamics on the cell ¢ycle. Based on these models, in Secs. 4 and 5 we
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carry out a series of computational experiments and some representative results of
these computations are presented. We carry out a parametric sensitivity analysis
and discuss an effective cell control using such parameters, We analyze nonlinear
effects in cell cycles, based on the construction of phase portraits for each of the
models discussed here. This is followed by a discussion of tuture development of
mathernatical models in this field and concluding remarks.

2. Mathematical Models of Cellular Processes from a Systems
Biology Perspective

As we already pointed out in the introductory part, an integrated coupled approach
in modeling cellular processes is required and this should include regulatory,
metabolic, and signaling networks. However, in all biological networks that govern
gene expression, signal transduction, and metabolism, stochasticity is a ubiquitous
element.® As only partial information is available about the cellular processes, the
most practical way to approach the problem lies with the development of a hier-
archy of mathematical models. Such an approach is typical to the development of
mathematical models for many complex physical systems®? 9 and the ideas that
have been developed for them are now being applied to biological systems too,
including cellular processes.

The starting point of the development of mathematical models for cellular pro-
cesses usually lies with biochemical reactions in cells where a biochemical noise
within genetic circuits is always present due to variability in amplitude, distribu-
tion, and propagation of signals. The results of this noise are unavoidable stochastic
fluctuations not only in gene expressions, but also in protein concentrations.®® The
latter represent the key variables in all the existing mathematical models for cellular
processes. If we assume the Markovian property of biochemical reactions, from the
Chapman-~Kolmogorov equation it is straightforward to derive the chemical master
equation (CME), following the known technique (c.g. Wang et al.® and references
therein):

_ M
BP(;J) - E{wi(X — 8)p(X — 0 8) — wi(X)p(X;t)}, (1)

where p is the probability function for the state of the molecules in the system
(cell) denoted by X = (Xy,...,X,,) at time ¢, 8; = (8,1,...,0;n) is the changc
of the state such that ¢ ; is a change in the number of jth molecule by the ith
reaction, and w;(X) is a transition rate from state X to X + 6, by ith chemical
reaction. A number of numerical algorithms have been developed for the solution
of (1). This includes the Gillespie stochastic simulation algorithm, the Gibson—
Bruck algorithm, r-leap approximations, Markov chain Monte Carlo procedures,
and a number of others with several software tools such as StochKit available in
the literature (e.g. Refs. 66-69 and references therein).
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Given the CME (1), by the Taylor expansion of wi( X — 8;)p(X — ;1) and fol-
lowing standard arguments, we can derive the Fokker—Plank equation, from where
we get the Langevin equations for our network:

dx(t)
) = £(x(e) + 0(0) e

where t(t) is white noise and in contrast to model (1) (which can be viewed as
the description of a discrete Markov process), model (2) is a continuous description
of the process (with x being the concentration of X (t) in the cell volume®®). This
model can be generalized further to the multicellular case in a way similar to Ref. 70,

Compared to the original microscopic model (1), model (2) can be seen as coarse-
grained and is sometimes referred to as a mesoscopic model.5"7! The actual form
of such a model can be derived from macroscopic deterministic equations which we
discuss next. This allows us to account for finite size effects.

If the system is large, under certain assumptions,®® we can arrive at deterministic
equations discussed in details in Sec. 3.1. As it is well known, when the number of
molecules is relatively small, such assumptions become inapplicable as modeling of
biochemical reactions as continuous fluxes of matter cannot be justified.57

2.1. Accounting for spatial effects

It is well known that the cell division mechanism is tightly coupled to the mito-
sis/growth process and this coupling determines the cell size.” The models account-
ing for such a coupling can be written in the following generic form:

8}}: & Il e

at{ = Rl (pq;’p;l’ k«'s.q: Df;’ kl}'-q)’ (3)
8}’3?,_ i LT

ot = F'l(pqqu’Df]’k;qu)’ (4)

where pg and p are the protein (or protein complex) concentrations of form ¢ in the
cytoplasm and nucleus, respectively, ks, is the protein (of form ¢) synthesis rate, D
and Dy are the diffusion coefficients for that protein in the cytoplasm and nucleus,
and finally, kg, and kj . are the protein degradation rates in the cytoplasm and the
nucleus, respectively. Several models have been developed recently in this direction
in order to account for spatio-temporal interactions,”>? but all the models we
are aware of used a number of substantial simplifications (e.g. two-compartment,
various decoupling assumptions, etc.). Simplifications in modeling cell cycles are
inevitable and one of the most generic ways to compensate for that lies through
the introduction of a stochastic element into the mathematical model as discussed
in Sec. 3.2.
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2.2. Accounting for coupled effects in modeling complex biological
systems

An intrinsic link between the cell division mechanism and the growth process as a
function of cell size is just one of many spatio-temporal couplings that will become
increasingly important in the development of mathematical models for cell cycles.
Another example of coupling is provided by cell polarization and electromechani-
cal effects in cells. Accounting for these effects would also lead to spatio-temporal
PDE-based models (e.g. Yi et al.”). Electromechanical effects in biological sys-
tems are ubiquitous. In most cases they require the development of multiscale
coupled models of electro-elasticity™ ™ and some such mathematical and com-
putational models have already been developed for cornea, ear and other bio-
tissues, electromotor proteins, cell membranes, protein aminoacids, to name just
a few. Time-dependent mathematical models describing electromechanical inter-
actions were analyzed in a series of publications®*%7 with main results on well-
posedness, solution regularity, and stability conditions for variational numerical
discretizations obtained there. In many systems, including biological, in addi-
tion to the electromechanical coupling, thermal effects become important®-9°
and the solution of the full thermo-electromechanical system is required in such
cases."®7 If the systems interact with other media such as fluids, gas, or acous-
tic media, an additional coupling should also be incorporated in the corresponding
models. 899

2.3. Reduction procedures for infinite dimensional dynamic
systems

One of the most efficient methodologies to approach the solution of mathematical
models describing coupled complex systems is to develop a systematic procedure for
model reduction. Such reductions can be carried out via low dimensional reductions
on centre manifolds and have been carried out successfully for coupled mathematical
models for infinite dimensional dynamic systems.8%:100

The above procedures are efficient also when the physical systems undergo phase
transformations and exhibiting such complex nonlinear behavior as hysteresis.'?" In
biological systems such transformations are intrinsic to many cellular processes.'® In
a number of cases, mathematical models tor phase transformations can be developed
based on the Landau-Devonshire theory!"27197 and efficient numerical techniques
have already been developed based on the finite differences,'®'99 finite element
approximations for (non-equilibrium thermodynamic) thin films*®3'1% and for more
general 3D multivariant situations,'®'""=1'3 the method of lines,'** finite volume
methods, %116 and hybrid optimization methodologies.’'” Many of the proposed
methodologies are based on the original reduction of the PDE model to a system
of differential-algebraic equations, first time proposed for such problems in Melnik
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et al.''® and developed further in Refs. 88, 100, 101, 104 and 119, along with sev-
eral low dimensional models. Earlier attempts to apply pseudospectral (collocation)
methodologies can be found in Refs. 120 and 121. These (essentially energy-based)
methodologies, previously applied to physical systems, could be valuable for the
treatment of hysteresis, phase transformations, and other nonlinear effects, in bio-
logical systems too. It should be noted, however, that the energy landscape approach
in the analysis of cell cycles under stochastic fluctuations is only at the beginning
of its development.!??

In what follows, we demonstrate that in the case of cellular processes the stochas-
ticity is important to incorporate into mathematical models not only at the level of
biological networks, such as regulatory, metabolic and others, but even in the case
when we need to describe (mathematically) relatively simple processes in biological
cells.

3. Mathematical Models of Cell Cycles

Based on the deterministic Novak-Tyson model, in this section we propose a
stochastic model framework that would allow us to account for fluctuations of
concentrations and their rates during special events of the cell cycle.

3.1. Deterministic modeling of cell cycles

By analyzing the control system for fission yeast cell cycles, Novak et al. developed
a mathematical model consisting of parametric differential-algebraic equations that
couple relative concentrations of different proteins and the mass of the cell as func-
tions of time (¢).% In the heart of the model is the activity of M-phase promoting
factor, MPF(#), as discussed in the introductory section.

Cell cycles consist of many events and one of the most important is the produc-
tion of cyclin which in combination with cyclin dependent kinase (or Cdk) leads
to the formation of the maturation (or M-phase, as mentioned before) promoting
tactor. Self-amplification of MPF influences other subsequent events such as DNA
replication, followed eventually by the MPF activation of the anaphase prormoting
complex (APC) which marks the cyclin for degradation, ending the cycle. As we
discussed above, in the first approximation, cell division can be viewed as a set of
biochemical reactions due to protein interactions. Our discussion here is focused on
cellular processes in yeast as a eukaryote with extensive homology to higher organ-
isms and with a large amount of data, from individual genes, proteins and pathways
to complete DNA sequences.'® Recall that in the context of yeast we have to deal
with four distinct phases: G}, S, Go, and M. G is the growth phase where the cell
must grow sufficiently to replicate its building blocks to give rise a new organism.
DNA replication and early bud formation take place in phase S. Gy is the gap phase,
and in phase M (metaphase) chromosomes become separated, preparing the way
for division. This is followed by M anaphase, as mentioned above {for a schematic
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representation of the yeast cell cycle, see, e.g. Klipp'?®). Maturation (M-phase)
promoting factor plays a fundamental role in many biological processes, including
being a regulator in oocytes during their maturation.'?#12> Due to its key role in
the mitosis, it is sometimes called as the mitosis-promoting factor.

Following previous works on the analysis of dynamic processes in yeast with
mathematical models, initiated by Novak and Tyson (see Ref. 123 and references
therein), the general setup for frequently used deterministic models is as follows.
We denote by z)(t) = Cdel3r(t),z2(t) = preMPF(l),z3(t) = Sted(t),za(t) =
Slplr(t), zs(t) = Sipl(t),z6(t) = IEP(t), 27(t) = Rumly(t),zs(t) = SK(t) the
relative concentrations of proteins of interest. The number of such proteins is prob-
lem specific and in the case of fission yeast we deal with eight such proteins plus
several others, including M-phase promoting factor. Other proteins can often be
incorporated into the model by algebraie, rather than differential, equations. Let,
further wg(t) = M () be the mass of the cell during the cell cycle at given moment
of time ¢. Then, dynamic interactions between quantities z;(t),...,z9(t) can be
modelled with the following general system of nonlinear ODEs:

dx(t)
dt

= £(x(1), 1), (5)

where x(t) = (21(t),...,zo(t))" and F(x(1),t) = (f1(x(t),1),. .., folx(t),1))”. The
type of nonlinearities, defined by the vector function f(x(¢),¢), is problem specific
and for fission yeast cells can be modelled by the following relationships:

fi(x(t),t) = kazo(t) — (kg + kyza(t) + k5 zs)z1 (1),
Fa(x(t),t) = kuwee(21(t) — 22(2)) — kasza(t) — (ky + kY za(t) + k3'zs(£))x2(2),

FoleE), ) = (K + s ) 3 s = (Kias(t) + ke MPP(E) 7200
Falx(t),8) = kb + k% — ks (0),

Ts(x(t), ) = krze(t) JTTSJ (;)xfg(t) i Jg:fg(t) ~ ka5 (2),

folx(t), 8) = @MPF(-&)H%—) . kl”mﬁ—?ﬁ(t)’

F(x(),8) = kuy — (kre + kla@s(t) + Ko MPE ()27 (t),
fa(x(2), t) = kg T F(t) — kiaxs(t),
folx(t),t) = pxo(t).

Three more proteins are involved in the definition of f(x(t),t) where their rel-
ative concentrations were denoted by Trimer(t), MPF(t) and TF(f). Furthermore,
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some coeflicients in the above definition are interdependent with the others, in pax-
ticular kyce and kps. Therefore, based on experimental observations, system (5) is
supplemented by the following algebraic relationships for

2@ ()2 (2)

rmert) = S/ — 0D (6)
mPF() = Z0) = mQ(t))S’;l(g) — Trimer(t)) o
TF(t) = GK (kiso(t), Ko + Kl MPF(t), Jis, Jic) (®)
kuee = Kuee + (Ruee = Kloco)GK (Vawee, Viwes MPF (8), Jawces Jiwee) — (9)

kas = ks + (ks — ks )GK (Vaos MPF(t), Vizs, Jozs, Jizs), (10)

where quantities £ and G are defined as follows:
Y =a(t) + 27(t) + Kaiss

and
2ad

b—a+be+ad+/(b—a+betad) —dad(d - a)

GK(a,b,c,d) =

‘The parameters in the model (5)-(10) are determined based on comparisons
with experimental results. In what follows, we use all the parameters from Novak
et al.,® summarized in Table 1.

From a mathematical point of view, the model (5)-(10) is a system of
differential-algebraic equations with parameters ranging from less than 1072 to 35.

Table 1. Parameters used in the Novak-Tyson model. All constants have units min™!, except
the J's and K ;45 which are dimensionless,

Role Parameters

ki = ki =003,k =1.0,k) =0.1

Kj = 1.0, kY = 10.0, Jy = 0.01, K} = 2.0,
kg = 35.0,J4 = 0.01

Cdel3 synthesis and degradation

Ste9 activation and inactivation

Slpl synthesis, degradation
activation and inactivation

1Y activation and inactivation
Rum) synthesis, degradation and
inhibition

SK synthesis and degradation
TF activation and inactivation
Weel activation and inactivation
Cde25 activation and inactivation
Rate of tyr-phosphorylation and
dephosphorylation

Growth rate

ki = 0.005, kf = 0.3, Js = 0.3,

ke = 0.1, ky = 1.0, kg = 0.25, J7; = Jg = 0.001
kg = 0.1, k1p = 0.04, Jg = Jy1y = 0.01

kyi =01, kiz = 0.01, K, = 1, k1, =3,

Kiss = 0.001

kiz = kia = 0.1

kis = 1.5, ki, = 1,]6’1’6 =2,J15 = J15 = 0.01
Vawee = 0.25, Viyee = 1, Jawee = Jimee = 0.01

Vazs = 1, Vias = 0.25, Jaas = Jizs = 0.01
Koo = 0.15,kll., = 1.3,k = 0.05,
ky. =5

1= 0.005
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Hence, from a numerical point of view, its solution requires a special attention,
typical for stiff models. From a biological point of view, the model describes
wild-type cell cycles of fission yeast. Changing kI, ., = 1.3 to k. = 0.3 in this model
would result in the model for the so-called Weel ™ mutant cell cycles.® Finally, note
that replacing k.. = 1.3 and k%, = 5 by kI/,. = 0.3 and k%, = 0.02 respectively,
we obtain a model for Weel ~cde25A mutant cell cycles.”?

The deterministic models for cellular processes discussed above do not account
for stochastic elements in the kinetics of biochemical reactions. A number of
attempts to bridge the gap between stochastic and deterministic behaviors of such
reactions provided a good starting point for more realistic cell cycle modeling!267
which led to the development of models and algorithms we discussed in Sec. 2. In
the following section, we discuss a hierarchy of stochastic mathematical models for
cell cycles that account for special events. Indeed, although the temporal evolution
of cells can be interpreted as a sequence of events,!26:1%7
deterministic.

not all of such events are

3.2. Stochastic modeling of cell cycles accounting for
special events

All biological processes, and the cell cycles are not an exception, result from the
coupled interactions of genes and proteins with an enormous variety of external
stimuli, the exact information on which is only partly known. This makes stochas-
tic mathematical models the most natural tool in dealing with the complexity
induced by such coupled interactions. In order to control the biological processes
such as cell cycles, the ideas of Markov chain network training, neural networks,
and evolutionary learning developed for complex systems applicationg?.64128-130
could become increasingly useful in this area too and the first steps in this direc-
tion have started to appear.'®! Most details of control issues, however, lie outside of
the scope of the present paper, and in what follows we focus only on the influence
of a stochastic element introduced into the mathematical models for cell cycles.
Such an element can be both detrimental when it drives cells to dramatically differ-
ent phenotypic states such as cancer and the transition to the genetic competence
state, as well as beneficial when it can be used as a stabilization mechanism, for
a population to increase its phenotypic variety and help adjusting to changing
environments.®?

Since a cell ¢ycle involves nonlinear variations of the protein concentrations
related to many stochastic processes functioning at different spatial and tempo-
ral scales, the regulation of cellular activities may not be deterministic.>'* In the
context of the model considered in the previous sub-section, we note that for wild-
type cell cycles of fission yeast, during the G1 phase, Ste9 and Ruml are activated
while Sipl and Cdcl3r are reduced rapidly. From the results of simulations and
experimental observations it is known (see, e.g. Fig. 2 in Novak et al.) that the mag-
nitudes of Sted, Cdeldr and Sipl can be relatively large to introduce fluctuations
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in such a way that some fluctuations of their derivatives may also be expected.
Furthermore, SK is also active at a latter stage of the G1 phase. During the S
phase, which is shorter than G1 and G2 phases but much longer than M phase, the
magnitudes of C'dcl3r and preM PF are large enough to generate fluctuations of
their varying rates. During the G2 phase, the magnitudes of Cdc13+ and preM PF
continue to increase. In the M phase, the magnitudes of Cdcl3y, pre M PF and
SLP1 vary rapidly and are large enough to introduce fluctuations. Finally, TEP is
also active in the M phase.

Based on the above observations, we consider the following general stochastic
model for wild-type cell cycles of fission yeast

dx(t) = £(x(t), £)dt + h(x(t),t)dW(t), (11)

where h(x(t),t) = diag(hi(x(),1),...,ho(x(¢),t)) is a diagonal matrix, and
W(t) = (Wi(t),...,Wo(t))" is a Wiener process'®® such that the term h(x(t),
¢)dW (t) models fluctuations of the rate of protein concentrations, or in other words,
deviations from the deterministic case. Indeed, the system of stochastic differential
equations (11) is reduced to model (5) it h(x(t),t) = 0.

Let us denote by g(x(t), t)dt the right hand side of equation (11). As mentioned
above, the case of fluctuations absent corresponds to the deterministic Novak-Tyson
model (5). In this model the vector function f(x{¢),?) is only an approximation
of real protein interactions due to the presence of many coupled phenomena and
processes left behind the scope of this model, including spatial interactions, many
activities by synthesis, degradation by various reactions, etc. At the same time,
model (11) will allow us to account for the information about the dynamics of cell
cycles, left behind the scope of model (5). This is done by introducing a degree of
uncertainty. While fluctuations in the solution due to such uncertainty have been
studied by other authors (initiated in Steuer'?), we developed for the first time
a hierarchy of mathematical models where such uncertainty is present also in the
vector function responsible for protein interactions.

First recall that although biochemical reaction rates and concentrations of pro-
teins are likely best described by stochastic variables, we agree with the authors of
Sveiczer et al.'™ who argued that it is not necessary to take all possible stochastic
variability into account. Note that an abrupt switching of the cell cycle from the
G2 phase to the M phase may take place when the amount of cyclin Cdcl3 attains
a certain value and the cell cycle stays in the M phase even when the amount of
cyclin Cdcl3 decreases to an amount below that value. Furthermore, the amount of
other protein concentrations is only significant at certain periods of the cell cycle.
Therefore, it is natural to add the fluctuations when magnitudes of protein con-
centrations exceed a certain threshold in our models or for the entire cell cycle.
Hence, in what follows we will aim at the development of mathematical models (a)
with fluctuations in f(x(t),¢) only, (b) with fluctuations in £(x(t),¢) and x(t) both
present for certain periods of the cell cycle, and (¢) with fluctuations in f(x(t),#)
for certain periods of the cell cycle and fluctuations in x(t) for the entire cell cycle.
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Other fluctuations of £(x(t), f) and x(t) can be considered to obtain other models,
but the above three cases seem to be most typical in practical applications.

As the first step, we approximate functions Wi (t),..., Wg(t) by the Gaussian
white noise with zero mean and unit variance (e.g. Kloeden and Platen'??). From
a numerical point of view, it means that in the solution of stochastic differential
equations (11) we will use the Gaussian white noise increments as the Wiener
path increments AW (£),..., AWy(t) corresponding to dW,(1),...,dWs(t). If we
define now

hi(x(t),t) =

:{0 M@0l for i@ > 05 g (12)

otherwise,

with r being a constant that provides an estimate of the amplitude of finctuations,
we obtain our first stochastic model. The model takes into account fluctuations
related to the varying rates of relative concentrations of proteins when the mag-
nitudes of the concentrations are beyond a threshold. In computational results
reported here we set, this threshold to o« = 0.3. Note that the fluctuations in this
model are determined by h;(x(t),t) which is related to £z;(t). This is different
from the work by Steuer,'? where fluctnations were determined by a function that
was related directly to z;(t).

Our next step will be to add term /2D]z;(t)] to \/r/fi(x(t),t)] in (12), where D
is a constant that can be used to control the amount of noise. Note that this term
was used in Ref. 12 for the entire cycle. A similar idea was used also in Ref. 134
where the authors analyzed the effect of time delay introduced in the activation of
anaphase-promoting complex by MPF. In our case, the definition of the fluctuation
term in model (11} is given as follows:

hl(x(t)’t):{(\/Tlfx(X(tLt)H\/QDISL‘»z(t)I) if|zi(t)] > o =120,

0, otherwise,

(13)

This defines our second model that takes into account fluctuations related to both,
the varying rates of relative concentrations of proteins and the relative concentra-
tions of proteins themselves. This is particularly useful in those cases where the
magnitudes of relative concentrations of proteins are beyond a given threshold.

This model can be generalized further if we add term /2D|z;(£)| to the right
hand side of (12). In this case, the definition of the fluctuation term in model (11)
becomes

[TEEDD + VIDEED il > (
ha(a(t),£) = { 2D|z;(t)], otherwise, A= Ll ol
(14)

The last model takes into account fluctuations related to the varying rates of relative
concentrations of proteins when the magnitudes of the concentrations go beyond a
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given threshold. Note that in this case, fluctuations are taken into account for the
entire cell cycle.

We note also that Huctuations introduced into these new models are related
to certain magnitudes of model variables that correspond to specific varying time
periods of proteins. In Chen et al.* the authors analyzed the effect of the cell cycle
on gene regulatory networks. In many applications, however, we need to solve an
inverse problem in a sense that we need to deduce the effect of gene regulatory
networks on the cell cycle. Main challenges related to this problem lie with the
fact that in gene regulatory networks there may be both regulatory and metabolic
activities, and gene expressions in the metabolic parts of gene regulatory networks
are very different from those in the regulatory parts. Consequently, the dynamics of
the cell cycle will be affected differently during regulatory and metaholic activities
of cellular gene regulatory networks. Hence, our mathematical models for the cell
cycle should be modified in all cases where it is critical to take into account the
behavior of gene regulatory networks. These modifications of systems (5) and (11)
can be formalized as follows:

dx(t) _
ke U)f(x(t),t) (15)

and
dx(t) = U(t)f(x(t), t)dt + V(t)h(x(t), t)dW (1), (16)

respectively, where U(t) = diag(ui(t), ..., uq(t)) and V(t) = diag(vi(t),...,v(t))
are diagonal matrices. Elements of the matrices U (t) and V(t) are chosen according
to the dynamics of the corresponding gene regulatory networks. For instance, they
should be chosen differently for the regulatory part and for the metabolic part of the
gene regulatory network. Clearly, when U(t) = I, (15) is reduced to (5) and when
U(t) = V(t) = I, (16) is reduced to (11). A more complicated case ocours when one
of the relative concentrations, let us say x;(t), doubles rapidly near k7' +t,,7. Here
T is the cycle time, k =0,1,2,...,0 < Ly, < 1. In this case, the choice of elements
of U(t) and V(t) can be made as follows:

aipi(t/T — k) + b, kT <t < (k+1)7T;

1, t=(k+ )T, L)

tti(f,) = ‘Ut(t) = {
where pi(t) = 1/(1 + e 7~t«)) is a distribution that is centered at byl =
1/(pi(1) = pi(0)), b = 1 — p(0)/(:(1) — pi(0)), and ~ is a constant.

4. Computational Experiments

In this section we describe three groups of experiments. All models discussed in
Sec. 3 have been implemented in Matlab. For comparison purposes, we have also
implemented the classical Novak—Tyson model as discussed in See. 3.1. We apply
Buler’s method to deterministic models, discussed in Sec. 3, and stochastic Euler’s
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method with variable time integrator to our stochastic models. When applying the
stochastic Fuler’s methodology, we use the following formula

Xni1 = X, + 6f, + \@h”(randn, ..., randn)”

where x,, = (21, ... ,xgn)T,f,, =1l s « s fgn)T, h, = diag(hi,,...,hg,),d is the
step size of numerical integration, and components of \/E(r'a.ndn,. . .,randn)T are
Gaussian white noise increments. '

Our first group of experiments deals with the models described in Sec. 3.1. In
particular, we apply the deterministic Novak-Tyson model to modeling wild-type
cells of fission yeast with the following initial conditions: z;(0) = 0.02,22(0) =
0.01,z3(0) = 1.0,24(0) = 2.1,25(0) = 2.1, 26(0) = 1,27(0) = 0.05,25(0) = 0 and
@9(0) = 1. These conditions were prompted by Fig. 3 in Novak et al.® The results
of computations based on this model are presented in Fig. 1 where only first two
cycles are shown. In Fig. 2 we present the phase portrait of M PF dependent on
Cdcl37 during the time interval that covers one cycle. The relative concentrations
of proteins in Fig. 1 are qualitatively the same as those previously reported in Novak
et al.’

From Figs. 1 and 2, we conclude that the cell cycle has the property of bistability.
This is expected. Indeed, before the amount of Cdel3r increases to a certain value,
MPF activity is low. However, when the amount of Cdel3r attains that value,
MPF activity increases abruptly. Then, M PF activity stays high until the amount
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Fig. 1. Protein concentrations with the model from Sce. 3.1 {color online): preMPF/MPLE,
Rumlq /Cdeldq, and Ste9 arc solid (blue), dashed (red), and dotted (green) lines, respectively.
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Fig. 2. Phase plot of M PF is dependent on Cdcl3p; it is obtained with the model from Sec. 3.1.

of Cdel3r is reduced to a certain small value. Hence, we observe that for a certain
range of Cdcl3r amount, there are two different states of the cell eycle, with low and
high M PF activities that correspond to interphase and mitosis, respectively. The
amount of C'del3+ needed to induce mitosis is higher than the amount of C'dc13y
needed to make the cell cycle stay in mitosis. The end result is that this nonlinear
phenomenon manifests itself in the fact that the cell cycle stays in mitosis, rather
than goes back to interphase, until the amount of Cdel3r is reduced to a small
critical value sufficient to start a new cell cycle. This is consistent with the results
previously reported. We move now to the next step in our analysis.

It is known that if we change the values of the parameters Kiee 2nd ke in the
above model from 1.3 and 5 to 0.2 and 3, respectively, we obtain a new model
that can be applied to modeling another organism. luspired by Fig. 3 in Novak
et al.,” we use the following initial conditions: 21(0) = 0.01, z3(0) = 0.001, 25(0) =
L0, 24(0) = 1.1,25(0) = 1.1,24(0) = 0.5, 2,(0) = 0.2,24(0) = 0 and z9(0) = 0.5.
The results of computations are presented in Fig. 3 and Fig. 4. We observe from
these figures that the protein dynamics obtained with this new model is quite
different from the results obtained with the previous model. It is clear that the
deterministic models reported in Sec. 3.1 are very sensitive to parameterization
procedures.

The second group of experiments is carried out on the stochastic models devel-
oped in Sec. 3.2. Our aim is to analyze the dynamics of the cell cycle when subjected
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to different fluctuations, as explained in Sec. 3.2. We use the same initial conditions
as before (see Fig. 1). We progressively set r = 2x 107° r = 5x 107", and r = 10~4
in (11), and take (12), (13) with D = r, and then (14) with D = 7. In Figs. 5-7 we
present the results of computations, giving relative protein concentrations for each
of the above cases (the upper, middle, and bottom plots for the respective values
of r as specified above). Furthermore, in Fig. 8 we present the phase portrait of
MPF, dependent on Cdcl3y, in one cycle. The plot is given for r = 2 x 107° in
(11) and (13).

For comparison purposes, the results of computation with the stochastic Steuer
model,'? given with the same specified initial conditions, are shown in Fig. 9. Based
on the analysis of Figs. 5, 6 and 7, we conclude that the period of the cycle obtained
with the stochastic models is not fixed and can be shorter or larger than the cycle
period obtained with the corresponding deterministic model. The results obtained
with Steuer’s model, presented in Fig. 9, led us to a similar conclusion. A closer
examination of Fig. 5 reveals that the effect of fluctuations induced by the varying
rates of relative protein concentrations gives us a more regular pattern compared
to the fluctuations induced by the relative concentrations of proteins themselves.
Furthermore, we note that the patterns shown in Figs. 5 and 6 are quite different
from the pattern in Fig. 9, while the pattern shown in Fig. 7 is similar to that
in Fig. 9. This re-emphasizes the conclusion made in Steuer!? that the noise can
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Fig. 5. Protein concentrations with the modified model (11) and (12): r = 2x1075,5x1075, 1074
(color online): preMPF /MPF, Ruml/Cdcl3y, and Ste9 are solid (blue), dashed (red), and dotted
(green) lines, respectively.
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Ifig. 7. Protein concentrations with the modified model (1) and (14) with v = 2 = 2 % 1077,
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Fig. 9. Protein concentrations with Steuer’s stochastic model: D = 2 x 107°,5 x 107°,1071
(color online): preMPF/MPF, Rumly/Cdcl3, and Sted are solid (blue), dashed (red), and dotted
(green) lines, respectively.
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be used to regulate the cell cycle. Note also that the analysis of the nonlinear
phenomena based on Figs. 6 and 8 leads us to the conclusions similar to those
discussed in the context of Figs. 1 and 2. However, Fig. 8 clearly demonstrates
the effect of fluctuations on the hystercsis loop that was absent when deterministic
models were applied.

Finally, we apply our stochastic model developed in Sec. 3 to the analysis of the
effects of metabolic events in gene regulatory networks on the cell cycle. We use
(16) with h(x(t),t),r =2 x 107°,r = 5 x 107% and r = 107* as it is specified by
(12), and U and V as it is specified by (17) (T = 138.63,t4, = 0.6 and vy = 50).
The results are pfesented in Fig. 10. Comparing Fig. 10 with Fig. 5, we conclude
that the dynamics of related gene regulatory networks can qualitatively influence
the evolution of cells and can change the cell cycle periodicity.

Our experiments show that when r is more significant than [, the plots with
our models are more similar to deterministic mocels. In the cases where D is more
significant than v, the plots with our models are more similar to those obtained
with stochastic models such as the one by Steuer. Changing « to larger values will.
make our models more similar to deterministic models. As can be seen from (17),

0
1000 1000
time(min) time(min)

Iig. 10. Protein concentrations with the modified model (16) and h(x(%),t) defined by (12), and
U and V by (17) (color online): preMPE/MPI, Rumly /Cdel3r, and Sted are solid (blue), dashed
(red), and dotted (green) lines, respectively.
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changing {4, will change the center of the distribution of p,(t) = 1/(1 4 e=7(#=*a.))
and changing the value of v will change the varying rate of p;(t). It can be expected
that when rapid fluctuations in cell cycles are present they will also be affected.
The varying rate of such fluctuations will also be different, depending on the values
of tg, and p;(t). This is confirmed further by additional experiments reported in the
next section.

5. Parametric Sensitivity and Cell Cycle Control

Cell cycle control is important for a number of biotechnological and bio-
nanotechnological applications, including tissue engineering, where in addition to
the complex nature of tissues,” we have to account for biocompatibility, geno-
toxicity tests and other important issues. Human tissues involve coupled complex
processes, in particular under their interactions with the environment. Similar to
other multiphase and multicomponent complex systems,? #5136 coupling the (mass-
action) kinetics to other processes, such as thermal and/or accounting for additional
effects such as internal viscosity, may be necessary in these situations too 89137138
At this stage, no such results are available in the literature in the context of cell
cycle models. The development of such refined models of cell cycles that would
take into account spatial (rather than only temporal) interactions in the context
of coupled processes would be important [or advances in molecular nanotechnology
where mechanical and electromechanical systems are developed at the molecular
scale. Indeed, it is well understood by now that, eg. nanoscale cell membrane
dynamics is associated with different phenomena of cell’s life and one of the most
important is cell cycle. The development of new biomaterials such as those based
on RNA, for scaffolding and controlled drug delivery techniques and devices®®!40
is another application area where such a control is becoming increasing important.

Recently, cell cycle regulation in eukaryotic cells has been studied in Battog-
tokh!'! with mathematical models accounting for available experimental data.
Further, cell-cycle control systems have been considered in Shen et al.*4? where
the authors implemented control via a cyclical genetic circuit composed of regu-
latory proteins with tight coupling to cell division and other important processes.
There is a widely accepted consensus that stochastic effects are important in deal-
ing with malfunctioning, such as cancer cells.*® The importance of stochasticity
has been recently emphasized in the context of models for the control of cell prolif-
eration following antigen stimulation, which is at the heart of the adaptive immune
response.'** When the determination of the time at which a stochastic process
exceeds a certain threshold is critical, we often arrives at the first passage time
problem that arises in many different applications. An efficient methodology for its
solution in the multivariate case has recently been developed in Zhang and Melnik
(see also references therein).'%® As our main focus in this paper is on the cell and
its responses to changing environmental conditions, a degree of uncertainty that
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may lead to special events in the cell cycles has been incorporated in the hierarchy
of the models developed here. This has been done through a set of parameters.
Therefore, in what follows we analyze the parametric sensitivity of a hierarchy of
our developed stochastic mathematical models in order to be able to identify those
parameters that would allow us an effective cell cycle control.

First, we analyze the protein concentrations with the modified model (11) and
(12) decreasing/increasing the value of r on the order of magnitude. Under the
given threshold, the qualitative behavior presented in Fig. 5 remains the same even
if we further decrease the value of r ten times. Recall that r provides an estimate of
the amplitude of fluctuations. Hence, we expect, that an increase in r will eventually
lead to Auctuation-driven numerical instabilities. Indeed, with the further increase
in r, the qualitative behavior of protein concentrations begins to change and already
for Thew = 20r, we observe fuctuation-driven numerical instabilities indicating a
breakdown of this model. In order to avoid that and to provide an efficient, control
of the cell cycle dynamics, a new model in our hierarchy should be considered where
an additional parameter is introduced.

The modificd model (11) and (13) contains such an additional parameter D.
This leads to a change in the qualitative behavior of protein concentrations when
we increase the value of r keeping I the same. In Fig. 11 we present results of such
an increase for roew = 107. As expected, in contrast to Fig. 6, the behavior now
becomes similar to the one presented in Fig. 5. As seen from Fig. 12, a more regular

r=5x 1O¥4

1x1072

I

i : 0
500 1000 500 1000
time(min) time(min)

Fig. 11. Protein concentrations with the modified model (11}, (13) for ryew = 107 (color onling):
preMPE/MPE, Rumly/Cdel3y:, and Sted are solid (blue), dashed (red), and dotted (green) lines,
respectively.
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I"tg. 12.  Protein concentrations with the modified model (I LY (15) for Thew = 0.17 (co]m: online):
preMPF/MPF, Rumly/Cdel3r, and Sted are solid (blue), dashed (red}, and dotted (green) lines,
respectively.

behavior is observed also for 7, = 0.17 when protein concentrations are calculated
on the basis of model (11), (13). However, the influence of stochasticity in this case
can already be observed at the bottom two subplots of preMPF. This is expected
as D becomes now more significant parameter compared to v. This is consistent
with our conclusions in the end of Scc. 4. When we decrease the value of D in this
model, keeping r the same, we observe the behavior changing, accompanying by a
shift of the periods, as observed from Fig. 13 plotted for r = 1074, However, the
influence of parameter D is still clearly observed on the bottom two subplots of
preMPF in Fig. 13. Larger values of D would produce a markedly different picture
even for smaller r as demonstrated by Fig. 14, where the influence of stochasticity
on the behavior of preMPF can clearly be observed even on the two upper subplots.

Note also that by increasing/decreasing the value of 7 in 4 times or less, while
keeping D the same, we expect from our analysis that the behavior of protein
concentrations presented in Fig. 7 will not change drastically. Indeed, recall that the
results for this behavior are obtained with the modified model] (11}, (14). However,
due to nonlinearities contained in the right hand side part, further increase in » will
lead to numerical instabilities. I'rom our numerical experiments, the upper limit on
r to preclude such instabilities is established as rcw = 5r.

Similar to our previous analysis, if we decrease D (e.g. lour times) in the mocdi-
fied model (11), (14), keeping r the same, the qualitative behavior of cell dynamics
approaches to the one presented in Fig. 5. However, the increase in values of
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Fig. 13. Protein concentrations with the modified model (11), (13) for Dyew = 0.25D (color
online): preMPF/MPF, Rumly/Cdcl3y, and Sted are solid (blue), dashed (red), and dotted
(green) lines, respectively.
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Fig. 14.  Protein concentrations with the modified model (11), (13) for Dyew = 4D (color online):
preMPF/MPF, Rumly/Cdel3r, and Sted are solid (blue), dashed (red), and dotted (green) lines,
respectively.




Nonlinear Dynamics of Cell Cycles. 449

8x 1072
o
N

D=

20% 1072

D=

2
-
5 g | flon -
x 1 R !
<~ i :
11 dh
o ; J
= == 1
500 1000 0 500 1000
time{min) time(min}

Fig. 15. - Protein concentrations with the modified model (11), (14) for Dyew = 4D (color onling):
preMPI/MPF, Rumlp/Cdcl3y, and Sted are solid (blue), dashed (red), and dotted (green) lines,
respectively.

D will lead to qualitative changes. As for model (11), (13), this is expected in
this case too due to the increased influence of stochasticity. We demonstrate this
increased influence by Fig. 15 where it can clearly be observed for all six sublots
of preMPF.

Finally, we analyze the parametric sensitivity of the results obtained with model
(16), (17) with respect to parameters v and t,;. We observe that if we decrease =,
the periodicity is changing. In Fig. 16 we demonstrate the emergence of a new
period for v = 0.05 (compare this figure with Fig. 10). Note further that the cell
cycle periodicity can be controlled more efficiently with parameter t,. Indeed, we
demonstrate this by Iligs. 17 and 18 which present protein concentrations with the
three times decreascd/increase value of 1, respectively (other parameters were kept
the same as discussed in the previous section).

The presented sensitivity analysis of our stochastic models coupled with cell
cycle control has a number of important consequences. Among other things, a
stochastic factor, intrinsic to the models considered here, can play a role of a
stabilization mechanism. Using a simple model, describing the activator-repressor
dynamics, the authors of Ref. 65 has recently shown that unstable fixed points in
system dynamics can be stabilized by noise.
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Fig. 17. Protein concentrations with the modified model (16), (17) for ty = 0.2 (color online):
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respectively.
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Fig. 18. Protein concentrations with the modified model (16), (17) for iz = 1.8 (color online):
preMPE/MPF, Rumlp/Cdcl3r, and Ste9 are solid (blue), dashed (red), and dotted (green) lines,

respectively.

6. Future Development of Mathematical Models
for Cell Cycles and Other Cellular Processes

" In Sec. 2 we provided a brief overview of the challenges in the development of more
refined mathematical models for cellular processes. Several additional aspects must
be taken into account in this development. One of the them stems from the obser-
vation that the analysis of tirne evolution of cellular processes reveals frequently
complex behaviors involving multistability and highly oscillatory patterns,®® where
efficient numerical integration procedures developed for highly oscillatory functions
could become quite important. 5 14° Furthermore, an accurate description of such
behaviors requires taking into account coupled multiscale nature of these processes.
Stochasticity is essential in developing mathematical models for such a description
due to the fact that random fluctuations in living cells are inevitable under cer-
tain conditions.’® They can restrict the coordination of cellular activities or can
introduce phenotypic heterogeneity which may facilitate cellular differentiation in
response to changing environmental conditions. %1% ‘

The development of more refined mathematical models for cell eycles would
be beneficial for such arcas as cryobiology /eryosurgery'®2!%3 (in which case ther-
mal effects need to be accounted for), in the treatment of cancerous and other

malignant cells'® (where coupled effects are essential), for medical applications
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 of bio-MEMS'* (in the context of electromechanical effects discussed above), and

ultimately for gene network engineering with a range of various applications. !5

Finally, we note that recent progress has been achieved in developing data driven
approaches to modeling cell cycles, including generalizations of the classical Smith—
Martin cell cycle model'*® and in developing integrated systems to support research
on the cell cycle.!

The factors listed above will increase the role of stochasticity in the mathemati-
cal modeling of cellular processes because stochastic luctuations are always present
at the level of biochemical reactions where the development of meaningful mathe-
matical models for cellular processes is usually originated from. As we emphasized
in this contribution, these stochastic fluctuations should not be eliminated from
the mathematical models under various reduction procedures we use to simplify
such models. As we demonstrated on simple, but convincing examples, stochastic-
ity remains an important factor to account for even for relatively simple biological
systems, involving cell cycles.

7. Conclusions

In the description of the dynamics of cell cycles by mathematical models gener-
ically represented by models such as (5), the vector function in the right-hand
side is only an approximation of real protein interactions. This is due to the pres-
ence of coupled phenomena and processes left behind the scope of such models,
e.g. spatial interactions, activities by synthesis, degradation by various reactions,
etc. This leads to a situation where part of the information about the dynam-
ics of cell cycles, left behind the scope of such models, should be incorporated
in the model by introducing a degree of uncertainty. While fluctuations in the
solution due to such uncertainty have been studied by other authors, we devel-
oped for the first time a hierarchy of mathematical models where such uncer-
tainty is also present in the vector function responsible for protein interactions.
Several main groups of models have been developed. Among them is the group
of madels that takes into account fluctuations of relative concentrations of pro-
teins during special events of cell c¢ycles. Such fluctuations are induced by vary-
ing rates of relative concentrations of proteins and/or by relative concentrations
of proteins themselves. As such fluctuations may be responsible for qualitative
changes in the cell, we developed a new group of models that accounts for the
effect of cellular dynamics on the cell cycle. Finally, we analyzed numerically
nonlinear effects in the cell cycle by constructing phase portraits based on the
newly developed models and carried out the parametric sensitivity analysis in
order to identify parameters for an efficient cell cycle control. The results of
computational experiments have clearly demonstrated that the metabolic events
in gene regulatory networks can qualitatively influence the dynamics of the cell
cycle.
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