SOVIET MATHEMATICS (Iz. VUZ)

(Izvestiya VUZ. Matematika)

Volume 35
Number 4
1991

ALLERTON PRESS, INC.

Published and referenced as:

Existence and Uniqueness Theorems of the Generalized Solution for a Class of Non-Stationary Problem of Coupled Electroelasticity, Melnik, V.N., Soviet Mathematics (Izvestiya VUZ. Mathematika), 35(4), 1991, 24-32.

EXISTENCE AND UNIQUENESS THEOREMS OF THE GENERALIZED SOLUTION FOR A CLASS OF NON-STATIONARY PROBLEM OF COUPLED ELECTROELASTICITY

(Roderick) V.N.Mel'nik

In [1] a non-stationary problem of coupled electroelasticity for cored infinite piezoelectric ceramic radially prepolarized cylinders has been considered. The second-order accuracy difference scheme has been constructed and justified, and computational experiments were carried out to solve this problem.

In the present article the existence and uniqueness theorems for the generalized solution of the problem are proved by the Faedo-Galerkin method, and the smoothness of the solution is studied.

1. The mathematical model of the considered class of the problems includes the motion equations of piezoelastic continuum and the equations of forced electrostatic of dielectrics [2]:

$$\rho \frac{\partial^2 u}{\partial t^2} = \frac{1}{r} \frac{\partial}{\partial r} (p\sigma_r) - \frac{\sigma_\theta}{r} + f_1(r, t), \ R_0 < r < R_1, \ t > 0,$$
 (1)

$$\frac{1}{r}\frac{\partial}{\partial r}(rD_r) = f_2(r,t), \qquad (2)$$

*hich are connected by means of characteristic equations

$$\sigma_{\mathbf{r}}^{=c_{11}}\varepsilon_{\mathbf{r}}^{+c_{12}}\varepsilon_{\theta}^{-e_{11}}E_{\mathbf{r}}, \quad \sigma_{\theta}^{=c_{12}}\varepsilon_{\mathbf{r}}^{+c_{22}}\varepsilon_{\theta}^{-e_{12}}E_{\mathbf{r}}, \quad D_{\mathbf{r}}^{=\varepsilon_{11}}E_{\mathbf{r}}^{+e_{12}}\varepsilon_{\theta}^{+e_{11}}\varepsilon_{\mathbf{r}}$$
(3)

(the strain-displacement relations (Cauchy's ones) have the form $\varepsilon_r = \frac{\partial u}{\partial r}$, $\varepsilon_{\theta} = \frac{u}{r}$) supplied by boundary and initial conditions

$$\sigma_{\mathbf{r}} = p_{0}(t) \text{ and } \varphi = V(t), \text{ when } r = R_{0}; \quad \sigma_{\mathbf{r}} = p_{1}(t) \text{ and } \varphi = -V(t), \text{ when } r = R_{1}, \tag{4}$$

$$u(r,0)=u_0(r), \quad \frac{\partial u(r,0)}{\partial t}=u_1(r)$$
 (5)

an electrostatic potential is introduced for the description of electric field *:Th the help of formula $E_{r}=-rac{\partial \varphi}{\partial r}$). Here u means radial displacements; E_{r} and D_{r} are radial components of the electric field intensity vector and electric induction rector, respectively; c_{kl} are elasticity moduli; e_{ij} are piezoelectric moduli; ϵ_{ll} -s dielectric constant, ρ is density of piezoelectric ceramics; f_1 is density of was forces; \boldsymbol{f}_2 is density of body's charge. We suppose that for any $\boldsymbol{\xi}_1$ and $\boldsymbol{\xi}_2$ the andition:

$$\delta(\xi_1^2 + \xi_2^2) \le c_{11} \xi_1^2 + 2c_{12} \xi_1 \xi_2 + c_{22} \xi_2^2 , \quad \delta > 0, \tag{6}$$

Fiulfilled, that means a non-negativity of the strain energy.

2. The questions of the solution existence for static problems of electroelashave been studied in the articles of L.P.Bitsadze, A.B.Belokon', I.I.Vorovich others (see [3] and [4]). The existence of the coupled non-stationary electro-*.asticity problems' solution is not investigated yet.

According to the general approach to the boundary problems of mathematical x-ys:cs (see [5]), let us call the pair of functions $(u(r,t),\varphi(r,t))\in$ (u(r,t)) = (u(r,t)) = (u(r,t)) = (u(r,t)) = (u(r,t)) = (u(r), when t=0), which satisfy the following

 $\int\limits_{R_0}^{R_1} (-\varepsilon_{11} r \frac{\partial \varphi}{\partial r} \frac{\partial \zeta}{\partial r} + e_{11} r \varepsilon_r \frac{\partial \zeta}{\partial r} + e_{12} r \varepsilon_\theta \frac{\partial \zeta}{\partial r}) dr = -\int\limits_{R}^{R_1} r f_2 \zeta dr \quad \forall \zeta \in \mathbb{W}^1_2(G) \text{ for a.e. } t \in (0,T).$ as the generalized solution of the problem (1)-(5). To simplify the text, we suppose the homogeneity of the boundary conditions (4). The space $\hat{V}_2^1(Q_1)$ consists of

elements of $W_2^1(Q_T)$, which vanish if: t=T; also $Q_T = I \times G$, I = (0,T), $G = (R_0,R_1)$.

The aim of this item is to prove the following theorem.

 $\text{THEOREM 1. If } f_1 \in \mathbb{W}^1_2(I,H), \ \frac{\partial f_2}{\partial t} \in L_2(I,\mathbb{W}^{-1}_2), \ f_2|_{t=0} \in \mathbb{W}^{-1}_2(G), \ u_0 \in \mathbb{W}^1_2(G) \ \text{and} \ u_1 \in L_2(G)$ then the unique generalized solution of the problem (1)-(5) with properties

$$\frac{\partial u}{\partial t} \in L_2(I, H), \quad \frac{\partial^2 u}{\partial t^2} \in L_2(I, (W_2^1)^*), \quad \frac{\partial \varphi}{\partial t} \in L_2(I, W_2^{-1}),$$

exists, too, where $H=L_2(G)$, and $W_2^{-1}(G)=(W_2^1(G))^{\bullet}$.

Perform the proof in three steps, using the Faedo-Galerkin's method (see [6] and [7]).

1). Let $\{\chi_{1m}\}$ and $\{\chi_{2m}\}$ be complete linearly independent systems of functions in the spaces $W_2^1(G)$ and $W_2^1(G)$, respectively; these systems satisfy the following

$$(\chi_{1k},\chi_{11})=\delta_{k1}, \quad (\nabla\chi_{2k},\nabla\chi_{21})=\delta_{k1},$$

$$\partial u$$

where $(u,v)=\int_{0}^{R_{1}}ruvdr$, $\nabla u=\frac{\partial u}{\partial r}$.

In the expressions for the Galerkin's estimates

$$u^{m} = \sum_{k=1}^{m} g_{1k}(t) \chi_{1k}(r), \quad \varphi^{m} = \sum_{k=1}^{m} g_{2k}(t) \chi_{2k}(r)$$

he functions $g_{ik}(t)$, i=1,2; $k=\overline{1,m}$, can be found from relations:

$$\begin{split} (\rho \frac{\partial^2 u^m}{\partial t^2}, & \chi_{11}) + (\sigma_r^m, \nabla \chi_{11}) + (\sigma_\theta^m, \frac{\chi_{11}}{r}) = (f_1, \chi_{11}), \\ & - (D_r^m, \nabla \chi_{21}) = (f_2, \chi_{21}), & l = \overline{1, m}, \\ & \frac{d}{dt} \; g_{1k}(t) \, \big|_{t=0} = (u_1, \chi_{1k}), & g_{1k}(0) = \alpha_{km}, \end{split}$$

here α_{km} are coefficients of the sums $u_0^m(r) = \sum_{k=1}^m \alpha_{km} \chi_{1k}(r)$. These approximate 11 inction $u_0(r)$ in norm $W_2^1(G)$, where $m\to\infty$, and the expressions of σ_r^m , σ_θ^m and D_r^m . stained with the replacement of all u and φ by u^{m} and φ^{m} in the appropriate equals u

By virtue of the choice of the functions χ_{2k} , $k=\overline{1,m}$, from relationship this is a system of m linear algebraic equations for m unknowns g_{2i}) we can easily

$$g_{21} = \frac{1}{\varepsilon_{11}} \left\{ (f_2, \chi_{21}) + e_{12} (\sum_{i=1}^{m} g_{1i} \frac{\chi_{1i}}{r}, \Delta \chi_{21}) + e_{11} (\sum_{i=1}^{m} g_{1i} \nabla \chi_{1i}, \nabla \chi_{21}) \right\}, \quad l = \overline{1, m}.$$

ing (15) for transformation (12), we get an ordinary equation system of the nd order with respect to t for the unknown g_{1k} , $k=\overline{1,m}$, in the following for

$$\rho \, \frac{d^2 g_1}{dt^2} + (A+B)g_1 = F$$

ovided by the initial conditions (14) and by symmetric matrices of "defor of "electric field" B. Here: $g_1 = (g_{11}, g_{12}, \dots, g_{1m})^T$, $F = (F_1, F_2, \dots, F_m)^T$, $A = (F_1, F_2, \dots, F_m)^T$

$$3=(b_{ij}), \quad i,j=\overline{1,m}, \quad a_{kl}=c_{11}(\nabla\chi_{1k},\nabla\chi_{1l})+c_{12}\Big[(\frac{\chi_{1k}}{r},\nabla\chi_{1l})+(\nabla\chi_{1k},\frac{\chi_{1l}}{r})\Big]+c_{22}(\frac{\chi_{1k}}{r},\frac{\chi_{1l}}{r}), \\ 2_{kl}=\sum\limits_{j=1}^{m}\Big\{\frac{e_{11}^{2}}{\varepsilon_{11}}(\nabla\chi_{11},\nabla\chi_{2j})(\nabla\chi_{1k},\nabla\chi_{2j})+ \qquad \qquad \frac{e_{12}^{2}}{\varepsilon_{11}}(\frac{\chi_{11}}{r},\nabla\chi_{2j})(\frac{\chi_{1k}}{r},\nabla\chi_{2j})+\frac{e_{11}e_{12}}{\varepsilon_{11}}\Big[(\nabla\chi_{11},\nabla\chi_{2j})\times \\ \chi(\frac{\chi_{1k}}{r},\nabla\chi_{2j})+(\frac{\chi_{1l}}{r},\nabla\chi_{2j})(\nabla\chi_{1k},\nabla\chi_{2j})\Big]\Big\}, \qquad F_{1}=(f_{1},\chi_{1l})+\frac{1}{\varepsilon_{11}} \qquad \sum\limits_{j=1}^{m}(f_{2},\chi_{2j})\Big[(e_{11}(\nabla\chi_{2j},\nabla\chi_{1l})+e_{12}(\nabla\chi_{2j},\frac{\chi_{1l}}{r})\Big]. \qquad \text{In analogous to } [8] \quad (p.327) \quad \text{way we can show that the system } (16) \\ \chi_{1k}=(g_{11},\chi_{1k})+\frac{1}{r}(g_{11},\chi_{1k})\Big]. \qquad \chi_{1k}=(g_{11},\chi_{1k})+g_{11}=(g_{11},\chi_{1k})+g_{11}=(g_{11},\chi_{1k})+g_{11}=(g_{11},\chi_{2j})\Big[(e_{11}(\nabla\chi_{2j},\nabla\chi_{1l})+g_{11})+g_{11}=(g_{11},\chi_{2j})\Big]. \qquad \chi_{1k}=(g_{11},\chi_{2k})+g_{11}=(g_{11},\chi_{2k})+$$

2) Let us multiply the equation (12) by function $\frac{dg_{11}}{dt}$, and the equation (13), after differentiation with respect to t, by g_{21} . Let us summarize (with respect to l from l to m) these results separately and then take a sum of them. Then we receive as a result:

$$\frac{d}{dt}E^{m}(t) = (f_{1}, \frac{\partial u^{m}}{\partial t}) + (\frac{\partial f_{2}}{\partial t}, \varphi^{m}), \tag{17}$$

where

$$E^{\mathbf{m}}(t) = \frac{1}{2}\rho \left\| \frac{\partial u^{\mathbf{m}}}{\partial t} \right\|^2 + \frac{1}{2}c_{11} \left\| \boldsymbol{\varepsilon}_{\mathbf{r}}^{\mathbf{m}} \right\|^2 + c_{12} \left(\boldsymbol{\varepsilon}_{\mathbf{r}}^{\mathbf{m}}, \boldsymbol{\varepsilon}_{\theta}^{\mathbf{m}}\right)^2 + \frac{1}{2}c_{22} \left\| \boldsymbol{\varepsilon}_{\theta}^{\mathbf{m}} \right\|^2 + \frac{1}{2}\varepsilon_{11} \left\| \boldsymbol{E}_{\mathbf{r}}^{\mathbf{m}} \right\|^2$$

Integrating the equation (17) with respect to t, estimating the terms on the right-hand side of the obtained identity by the help of the Cauchy-Bunyakovskii generalized inequality, taking into account the Poincare inequality and the condition (16), we have

$$\begin{split} & \| \frac{\partial u^{\mathsf{m}}}{\partial t}(t) \|_{\mathsf{H}}^{2} + \| u^{\mathsf{m}}(t) \|_{\mathsf{W}_{2}^{1}(G)}^{2} + \| \varphi^{\mathsf{m}}(t) \|_{\mathsf{W}_{2}^{1}(G)}^{2} \leq M_{1} \Big\{ \| E_{\mathsf{r}}^{\mathsf{m}}(0) \|_{\mathsf{H}}^{2} + \int_{0}^{t} | u^{\mathsf{m}}(\tau) \|_{\mathsf{W}_{2}^{1}(G)}^{2} d\tau + \\ & \quad + \int_{0}^{t} | \varphi^{\mathsf{m}}(\tau) \|_{\mathsf{W}_{2}^{1}(G)}^{2} d\tau + \| u_{0}^{\mathsf{m}} \|_{\mathsf{W}_{2}^{1}(G)}^{2} + \| u_{1}^{\mathsf{m}} \|_{\mathsf{H}}^{2} + \| f_{1} \|_{\mathsf{W}_{2}^{1}(I,\mathsf{H})}^{2} + \| \frac{\partial f_{2}}{\partial t} \|_{\mathsf{L}_{2}(I,\mathsf{W}_{2}^{-1})}^{2} \Big\}. \end{split} \tag{18}$$

On estimation of the term $\|E_{\mathbf{r}}^{\mathbf{m}}(0)\|^2$ we use the equation (13) when t=0; the (13) as scalar multiplied by function g_{21} and summarized with respect to l from 1 to m:

$$\|E_r^{\mathfrak{m}}(0)\|_{H}^{2} \leq M_{2} (\|\varepsilon_{r}^{\mathfrak{m}}(0)\|^{2} + \|\varepsilon_{\theta}^{\mathfrak{m}}(0)\|^{2} + \|f_{2}(0)\|_{W_{2}^{-1}(G)}^{2}) \leq M_{3} \|u^{\mathfrak{m}}(0)\|_{W_{2}^{-1}(G)}^{2} + M_{2} \|f_{2}(0)\|_{W_{2}^{-1}(G)}^{2}.$$

arroducing the notation:

$$\begin{split} \mathcal{M}_{1} = & \mathcal{M}_{1} \mathcal{M}_{3} \left[u^{m}(0) \right]_{W_{2}^{1}(G)}^{2} + \mathcal{M}_{1} \mathcal{M}_{2} \left[f_{2}(0) \right]_{W_{2}^{-1}(G)}^{2} + \mathcal{M}_{1} \left(\left\| u_{0}^{m} \right\|_{W_{2}^{1}(G)}^{2} + \left\| u_{1}^{m} \right\|_{H}^{2} + \left\| f_{1} \right\|_{W_{2}^{1}(I,H)}^{2} + \left\| \frac{\partial f_{2}}{\partial t} \right\|_{L_{2}(I,W_{2}^{-1})}^{2} \right) \end{split}$$

and using the Gronwall's inequality [10], we get from (18) a following a priori

$$\|\frac{\partial u^{m}(t)}{\partial t}\|_{H}^{2} + \|u^{m}(t)\|_{W_{2}^{1}(G)}^{2} + \|\varphi^{m}(t)\|_{W_{2}^{1}(G)}^{2} \le C(T, M_{1}, M_{4}). \tag{19}$$

3) Due to the the inequality (19) the sequences $\{u^{m}(t)\}, \left\{\frac{\partial u^{m}(t)}{\partial t}\right\}$ and $\{\varphi^{m}(t)\}$

bounded in the spaces $L_2(I,W_2^1)$, $L_2(I,H)$ and $L_2(I,H)\cap L_2(I,W_2^1)$, respectively. Hermore, we can choose from these sequences the following subsequences (denote

them by $\{u^{\nu}\}$, $\{\frac{\partial u^{\nu}}{\partial t}\}$ and $\{\varphi^{\nu}\}$, respectively), which converge weakly in appropriate spaces:

$$u^{\nu}(t) \rightarrow z(t)$$
 weakly in $L_2(I, W_2^1)$, $\frac{\partial u^{\nu}}{\partial t} \rightarrow \frac{\partial z(t)}{\partial t}$ weakly in $L_2(I, H)$ and $\varphi^{\nu}(t) \rightarrow y(t)$ weakly in $L_2(I, H) \cap L_2(I, W_2^1)$, if $v \rightarrow \infty$. (20)

Like in [6] and [7] we conclude that the initial condition $u|_{t=0}=u_0(r)$ is fulfilled due to the convergence of $u^{\mathcal{V}}$ to z in $L_2(G)$ and by virtue of $u^{\mathcal{V}}(r,0) \rightarrow u_0(r)$ in $L_2(G)$. Let us select the functions $\xi^1(t) \in W_2^1(0,T)$, $\xi^1(T)=0$ and $\xi_1(t) \in \mathcal{C}^{\infty}(\overline{I})$. We multiply each relationship from (12) by the appropriate function ξ^1 , summarize the obtained equalities with respect to I and integrate the result with respect to I from zero to I. Integrating by parts the obtained result, we transfer the derivative with respect to time from u^{m} onto $\eta \equiv \sum_{l=1}^{\infty} \xi^1(t) \chi_{1l}(r)$. We get an identity as faceful:

$$\int_{Q_T} r(-\rho \frac{\partial u^m}{\partial t} \frac{\partial \eta}{\partial t} + \sigma_r^m \frac{\partial \eta}{\partial r} + \frac{\sigma_\theta^m}{r} \eta) dr dt - \int_{R_0}^{R_1} r\rho \frac{\partial u^m}{\partial t} \eta \Big|_{t=0} dr = \int_{Q_T} rf_1 \eta dr dt, \text{ that holds}$$
for any η of the form:
$$\sum_{l=1}^{m} \xi^l(t) \chi_{11}(r). \tag{21}$$

We multiply the relationships (13) by functions ξ_1 and summarize the obtained equations with respect to I:

$$\int_{R_{0}}^{R_{1}} (-\varepsilon_{11} r \frac{\partial \varphi^{m}}{\partial r} \frac{\partial \zeta}{\partial r} + e_{11} r \varepsilon_{r}^{m} \frac{\partial \zeta}{\partial r} + e_{12} r \varepsilon_{\theta}^{m} \frac{\partial \zeta}{\partial r}) dr = -\int_{R_{0}}^{R_{1}} r f_{2} \zeta dr \qquad \forall \zeta \equiv \sum_{i=1}^{m} \xi_{i}(t) \chi_{2i}(r). \tag{22}$$

Denote by $\pi_{\mathbf{m}}$ the set of functions η representable in the form $\sum\limits_{l=1}^{m} \xi^{l}(t)\chi_{1l}(r)$, and $\Omega_{\mathbf{m}}$ is a notation for the set of functions ζ such that they have the form $\sum\limits_{l=1}^{m} \xi_{l}(t)\chi_{2l}(r)$. According to (20) we can pass in (21) and (22) to the limits by the above chosen subsequences $\{u^{\nu}\}$ and $\{\varphi^{\nu}\}$, with the fixed $\eta \in \pi_{\mathbf{m}}$ and $\zeta \in \Omega_{\mathbf{m}}$. That leads to identities (7) and (8) for a pair of the limit functions: $\{z,y\}$ $\forall \eta \in \pi_{\mathbf{m}}$, $\zeta \in \Omega_{\mathbf{m}}$. Since $\bigcup\limits_{m=1}^{J} \pi_{\mathbf{m}}$ is dense in $\widehat{\mathbb{W}}_{2}^{1}(Q_{T})$ and $\bigcup\limits_{m=1}^{\infty} \Omega_{\mathbf{m}}$ is dense in $L_{2}(I,\widehat{\mathbb{W}}_{2}^{1}(G))$ (see [5], p.215. [11], p.39) and also $z \in \mathbb{W}_{2}^{1}(Q_{T})$ and $y \in L_{2}(I,\widehat{\mathbb{W}}_{2}^{1}(G))$, we have that (7) and (8) are fulfilled for the pair of functions $\{z,y\}$ when $\forall \eta \in \widehat{\mathbb{W}}_{2}^{1}(Q_{T})$ and $\zeta \in \mathbb{W}_{2}^{1}(G)$ (for almost all $t \in (0,T)$). Using now (20), equation (1) and equation (2) differentiated with respect to t, we get

$$\frac{\partial z}{\partial t} \in L_2(I, H), \quad \frac{\partial^2 z}{\partial t^2} \in L_2(I, (W_2^1)^*), \quad \frac{\partial y}{\partial t} \in L_2(I, W_2^{-1}).$$

Supposing the existence of two solutions (u, φ) and (w, β) of the problem (1)-(5), we notice that their difference U=u-w, $\Phi=\varphi-\beta$ satisfy the homogeneous equation system (1)-(2) with homogeneous initial conditions. Repeating the argument of item 2, we get an a priori estimation (19) for the functions (U, Φ) when C=0 follows that $U=\Phi=0$ (the proof of the uniqueness of the solutions is given also [12], p.22), that complete the proof of the theorem 1.

3.1) Let us study the smoothness of the generalized solution. We show that strengthening of the theorem 1 conditions we can prove the existence of a smooth solution than the solution with the properties (9) (they will coincide

virtue of the uniqueness).

THEOREM 2. If the conditions $f_1 \in W_2^2(I,H)$, $\frac{\partial f_2}{\partial t} \in W_2^1(I,W_2^{-1}(G))$, $\frac{\partial f_2}{\partial t}|_{t=0} \in W_2^{-1}(G)$, $u_0 \in W_2^2(G)$ and $u_1 \in W_2^1(G)$ are fulfilled, then the unique generalized solution of the problem (1)-(5) with properties

$$\frac{\partial^2 u}{\partial t^2} \in L_2(I, H), \quad \frac{\partial^3 u}{\partial t^3} \in L_2(I, (W_2^1)^{\bullet}), \quad \frac{\partial^2 \varphi}{\partial t^2} \in L_2(I, W_2^{-1}). \tag{23}$$

exists.

PROOF. The equation system

$$\rho \frac{\partial^2 p}{\partial t^2} = \frac{1}{r} \frac{\partial}{\partial r} (r \sigma_r^{(P,S)}) - \frac{\sigma_{\theta}^{(P,S)}}{r} + \frac{\partial f_1}{\partial t} , \qquad (24)$$

$$\frac{1}{r}\frac{\partial}{\partial r}(rD_r^{(P,S)}) = \frac{\partial f_2}{\partial t} , \qquad (25)$$

$$P(0)=u_{1}, \ \rho(\frac{\partial P}{\partial t})(0)=\frac{1}{r} \frac{\partial}{\partial r} \left[r(c_{11} \frac{\partial u_{0}}{\partial r} + c_{12} \frac{u_{0}}{r} - e_{11} E_{r}(0)\right] - \frac{1}{r}(c_{12} \frac{\partial u_{0}}{\partial r} + c_{22} \frac{u_{0}}{r} - e_{12} E_{r}(0)) + f_{1}(r,0), \ \sigma_{r}^{(P,S)}|_{\partial G} = S|_{\partial G} = 0,$$
 (26)

where $\sigma_r^{(P,S)}$, $\sigma_\theta^{(P,S)}$ and $D_r^{(P,S)}$ are obtained with the replacements of all u by P and φ by S in the correspondent relationships, $\partial G = \{R_0, R_1\}$ and the function $E_r(0)$, determined from relationship

$$\frac{\partial}{\partial r} \left[e_{12} u_0 + e_{11} r \frac{\partial u_0}{\partial r} + \epsilon_{11} r E_r(0) \right] = r f_2(r,0), \tag{27}$$

has, by the theorem 1, the unique generalized solution: $(P,S) \in W_2^1(Q_T) \times L_2(I,\mathring{W}_2^1)$, provided with the properties

$$\frac{\partial P}{\partial t} \in L_2(I, H), \quad \frac{\partial^2 P}{\partial t^2} \in L_2(I, (W_2^1)^*), \quad \frac{\partial S}{\partial t} \in L_2(I, W_2^{-1}). \tag{28}$$

Integrating the equations (24) and (25) along an interval (0,t) and taking into account the conditions (26) and (27), we obtain the following equation system:

$$\rho \ \frac{\partial^2 w}{\partial t^2} = \frac{1}{r} \ \frac{\partial}{\partial r} (r \sigma_r^{(w,\eta)}) \ - \ \frac{\sigma_r^{(w,\eta)}}{r} + f_1, \quad \frac{1}{r} \ \frac{\partial}{\partial r} (r D_r^{(w,\eta)}) = f_2,$$

where the functions w(t) and $\eta(t)$ are defined by formulas

$$w(t) = u_0 + \int_0^t P(\tau)d\tau, \quad \eta(t) = \varphi(0) + \int_0^t S(\tau)d\tau$$
 (29)

and have the properties

$$\frac{\partial w}{\partial t} = P(t), \quad \frac{\partial \eta}{\partial t} = S(t), \quad w(0) = u_0, \quad \left(\frac{\partial w}{\partial t}\right)(0) = u_1, \quad \eta \mid_{\partial C} = \sigma_r^{(w, \eta)} \mid_{\partial C} = 0. \tag{30}$$

accordance with (9) and (28)-(30) we have $\frac{\partial w}{\partial t} \in L_2(I, W_2^1)$, $\frac{\partial^2 w}{\partial t^2} \in L_2(I, H)$, $\frac{\partial^2 w}{\partial t^2} \in L_2(I, W_2^1)^*$), $\frac{\partial \eta}{\partial t} \in L_2(I, W_2^1)^*$ and $\frac{\partial^2 \eta}{\partial t^2} \in L_2(I, W_2^{-1})$, i.e., the pair of functions (w, η) is the generalized solution of the problem (1)-(5), satisfying the conditions (9) and (23).

The proof of the solutions' uniqueness is carried out by the well-known hods (see the analogous statement proof for the theorem 1 in [12]) and completes proof of the theorem 2.

2) Finally we find the conditions, under which the generalized solution of the find the properties (1)-(5), provided with the properties (23), possesses also the properties:

PI

T=

Th

Ti

Fr

(ō.

: .70

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{r}^2}, \frac{\partial^2 \varphi}{\partial \mathbf{r}^2}, \frac{\partial^2 \mathbf{u}}{\partial t \partial \mathbf{r}}, \frac{\partial^2 \varphi}{\partial t \partial \mathbf{r}} \in L_2(I, H). \tag{31}$$

e consider the auxiliary equation system for unknown (σ_r, φ) . This system is obtaied by differentiation with respect to r of the equation (1) of the original ystem:

$$\rho r \frac{\partial^2 \sigma_r}{\partial t^2} = a \frac{1}{r} \frac{\partial}{\partial r} [r \frac{\partial}{\partial r} (r \sigma_r)] + b \frac{1}{r} \frac{\partial}{\partial r} (r \sigma_r) - a \frac{1}{r} \frac{\partial}{\partial r} (r \sigma_\theta) - b \frac{\sigma_\theta}{r} + F_1 , \qquad (32)$$

$$\frac{1}{r} \frac{\partial}{\partial r} [r(k_1 \sigma_r + k_2 \sigma_\theta + k_3 E_r)] = f_2, \tag{33}$$

here σ_{r} , σ_{θ} and E_{r} are connected by the condition:

$$c_{11} \frac{\partial}{\partial r} (r\sigma_{\theta}) + c_{12}\sigma_{\theta} = c_{12} \frac{\partial}{\partial r} (r\sigma_{r}) + c_{22}\sigma_{r} + k_{2}' \frac{\partial}{\partial r} (rE_{r}) + k_{1}'E_{r}; \tag{34}$$

$$=c_{11}^{}-e_{11}^{2}/\varepsilon_{11}^{},\quad b=c_{12}^{}-e_{11}^{}e_{12}^{}/\varepsilon_{11}^{},\quad F=a\frac{1}{r}-\frac{\partial}{\partial r}(r^{2}f_{1}^{})+bf_{1}^{},\quad k_{1}^{\prime}=c_{22}^{}e_{11}^{}-c_{12}^{}e_{12}^{},$$

$${}_2^{\prime}=e_{11}c_{12}-e_{12}c_{11},\ q=c_{12}^2-c_{11}c_{22},\ k_1=-k_1^{\prime}/q,\ k_2=-k_2^{\prime}/q,\ k_3=\varepsilon_{11}+(c_{11}e_{12}^2-c_{22}e_{11}^2)/q.$$

he initial boundary conditions have the form:

$$\sigma_{r}|_{\partial c} = \varphi|_{\partial c} = 0, \quad \sigma_{r}|_{t=0} = \sigma_{0}, \quad \frac{\partial \sigma_{r}}{\partial t}|_{t=0} = \sigma_{1}, \quad (35)$$

here σ_1 and σ_1 are the radial stress and the rate of change of σ_1 in the zero ime.

We say that the pair of functions $(\sigma_r(r,t),\varphi(r,t))\in W^1_{2,0}(Q_T)\times L_2(I,\mathring{W}^1_2(G))$ $\sigma_r(r,t)$ equal to $\sigma_0(r)$ when t=0) is a generalized solution f the problem (33)-(35) if the identity

$$= \int\limits_{Q_{_{\rm T}}} r \big(a \sigma_{_{\textstyle \Theta}} \ \frac{\partial \eta}{\partial r} \ - b \frac{\sigma_{_{\textstyle \Theta}}}{r} \eta + F_{_{\textstyle 1}} \eta \big) dr dt \quad \forall \eta \in \hat{\mathcal{W}}^1_{2,\,0} (Q_{_{\textstyle \mathrm{T}}}) \,,$$

$$\int_{R_0}^{R_1} \left[-k_3 r \frac{\partial \varphi}{\partial r} \frac{\partial \zeta}{\partial r} + k_1 r \sigma_r \frac{\partial \zeta}{\partial r} + k_2 r \sigma_\theta \frac{\partial \zeta}{\partial r} \right] dr = \int_{R_0}^{R_1} r f_2 \zeta dr$$

olds for any $\zeta \in W_2^1(G)$ and for almost all $t \in (0,T)$. Here $W_{2,0}^1(Q_T)$ is the subspace of the space $W_2^1(Q_T)$, in which the smooth functions, vanishing near $r=R_0$ and $r=R_1^1$ epresents a dense set (see [5],p.24),

$$\sigma_{\theta} = \delta_{1} \frac{\partial}{\partial r} (r\sigma_{r}) + \delta_{2}\sigma_{r} + \delta_{3} \frac{\partial}{\partial r} (rE_{r}) + \delta_{4}E_{r}, \tag{36}$$

here
$$\sigma_1 = 1 + \frac{c_{11}k_1}{c_{12}k_2}$$
, $\delta_2 = c_{22}/c_{11}$, $\delta_3 = \frac{1}{c_{12}} \left[k_2' + \frac{c_{11}k_3}{k_2} \right]$, $\delta_4 = k_1'/c_{12}$ (the condition (36)) ollows from (34) in view of (33)).

Let $\{\chi_{1m}\}$ and $\{\chi_{2m}\}$ be linearly independent functions' set in the space $W_2^1(G)$ atisfying the orthonormality conditions (10). Let us define the Galerkin's approximations:

$$\sigma_r^{m} = \sum_{j=1}^m g_{mj}^1(t)\chi_{1j} \quad \text{and} \quad \varphi^{m} = \sum_{j=1}^m g_{mj}^2(t)\chi_{2j}.$$

ne unknown functions g_{mj}^i , i=1,2, are defined from the relationships:

$$\frac{\partial^2 \sigma_r^m}{\partial t^2}, \chi_{11} + a \left(\frac{\partial}{\partial r} (r \sigma_r^m), \nabla \chi_{11} \right) + b \left(\sigma_r^m, \nabla \chi_{11} \right) = a \left(\sigma_\theta^m, \nabla \chi_{11} \right) - b \left(\frac{\sigma_\theta^m}{r}, \chi_{11} \right) + (F_1, \chi_{11}),$$

$$k_1 \sigma_r^m + k_2 \sigma_\theta^m + k_3 E_r^m, \nabla \chi_{21}) = (f_2, \chi_{21}), \quad l = \overline{1, m}, \quad \frac{dg_{mj}^1}{dt} \Big|_{t=0} = (\sigma_1, \chi_{1j}), \quad g_{mj}^1(0) = \alpha_j^m, \quad \frac{dg_{mj}^1}{dt} \Big|_{t=0} = (\sigma_1, \chi_{1j}), \quad g_{mj}^1(0) = \alpha_j^m, \quad \frac{dg_{mj}^1}{dt} \Big|_{t=0} = (\sigma_1, \chi_{1j}), \quad g_{mj}^1(0) = \alpha_j^m, \quad \frac{dg_{mj}^1}{dt} \Big|_{t=0} = (\sigma_1, \chi_{1j}), \quad g_{mj}^1(0) = \alpha_j^m, \quad \frac{dg_{mj}^1}{dt} \Big|_{t=0} = (\sigma_1, \chi_{1j}), \quad \frac{dg_{mj}^1}{dt} \Big|_{t=0} =$$

where α_j^m are coefficients of the expansion $\sigma_0^m(r) = \sum_{j=1}^m \alpha_j^m \chi_{1j}(r)$, which approximates for $m \to \infty$ the function $\sigma_0(r)$ in norm $\hat{\mathbb{W}}_2^1(G)$;

$$\sigma_{\theta}^{\mathfrak{m}} = \delta_{1} \ \frac{\partial}{\partial r} (r \sigma_{r}^{\mathfrak{m}}) + \delta_{2} \sigma_{r}^{\mathfrak{m}} + \delta_{3} \ \frac{\partial}{\partial r} (r E_{r}^{\mathfrak{m}}) + \delta_{4} E_{r}^{\mathfrak{m}}.$$

One can show, as it was done in the proof of theorem 1, that the system (37) and (38) has an unique solution in the interval I and, in addition, $\frac{dg_{mj}^1}{dt} \in W_2^1(0,T)$, $g_{mj}^2 \in L_2(0,T)$. It means that we can define uniquely σ_r^m and φ^m from this system.

We multiply the first equation of the system (37) by the function $\frac{dg_{mj}^1}{dt}$, the second equation by g_{mj}^2 , summarize the results with respect to l from 1 to m and take the sum of them. Using the same methods of an a priori estimation like in the proof of the theorem 1, we obtain

$$\rho \left[r \right] \frac{\partial \sigma_{r}^{m}(t)}{\partial t} \left[\frac{2}{H} + \left[\frac{\partial}{\partial r} (r \sigma_{r}^{m})(t) \right] \right]_{H}^{2} + \int_{0}^{t} \left[E_{r}^{m}(t) \right]_{H}^{2} dt \leq M_{1} + M_{2} \int_{0}^{t} \left[\frac{\partial}{\partial r} (r \sigma_{\theta}^{m}(t)) \right]_{H}^{2} dt + M_{3} \int_{0}^{t} \left[\sigma_{\theta}^{m}(t) \right]_{H}^{2} dt.$$
 (39)

Taking into account the condition (34) and equation (3), we can show that

$$\alpha \big[\frac{\partial}{\partial r}(r\sigma_{\theta})\big]^2 + \beta(\sigma_{\theta})^2 \leq \big[\gamma_1 \ \frac{\partial}{\partial r}(r\sigma_r) + \gamma_2\sigma_r\big]^2, \ \alpha,\beta,\gamma_i>0, \ i=1,2.$$

Therefore we obtain from (39) the a priori estimation for the Galerkin's approximations σ_r^m , φ^m :

$$\left| r \frac{\partial \sigma_{r}^{m}(t)}{\partial t} \right|_{H}^{2} + \left| \frac{\partial}{\partial r} (r \sigma_{r}^{m})(t) \right|_{H}^{2} + \int_{0}^{t} \left| E_{r}^{m}(t) \right|_{H}^{2} dt \le C. \tag{40}$$

From the inequality (40) it follows that the sequences $\{\sigma_r^{\rm m}(t)\}$, $\{\frac{\partial}{\partial r}(r\sigma_r^{\rm m})(t)\}$ and $\{\frac{\partial}{\partial r}\sigma_r^{\rm m}(t)\}$ are bounded in the spaces $L_2(I,H)\cap L_2(I,\mathring{W}_2^1)$, $L_2(I,H)$ and $L_2(I,H)$, respectively. Following the scheme of the theorem 1 proof, we obtain the next result:

LEMMA. If $F_1 \in W_2^1(I,H)$, $f_2 \in L_2(I,W_2^{-1})$, $\sigma_0 \in W_2^1(G)$ and $\sigma_1 \in L_2(G)$, then there exists the unique generalized solution of the problem (32)-(35) with the properties $\frac{3\sigma_1}{2L} \in L_2(I,H)$ and $\frac{\partial^2 \sigma_1}{\partial t^2} \in L_2(I,W_2^{-1})$.

To formulate the existence and uniqueness theorem for generalized solution of the problem (1)-(5), which would have the properties (23) and (31), let us find the explicit form of the concordance condition:

$$\sigma|_{t=0} = \sigma_0|_{\partial G} = \left[c_{11} \frac{\partial u_0}{\partial r} + c_{12} \frac{u_0}{r} - e_{11} E_r(0)\right]|_{\partial G} = 0.$$

For this purpose the value $E_r(0)$ can be found from the relationship (27) after diegrating from R_0 up to r ($R_0 < r \le R_1$), and substituting $E_r(0)$ into the latter relation. In consequence, the concordance condition between the initial boundary conditions and the right-hand side of the equation (2) will take the form

$$\left[\left(c_{11} + \frac{e_{11}^2}{\varepsilon_{11}} \right) r \frac{\partial u_0(r)}{\partial r} + \left(c_{12} + \frac{e_{11}e_{12}}{\varepsilon_{11}} \right) u_0(r) \right]_{R_0}^{R_1} = \frac{e_{11}}{\varepsilon_{11}} \int_{R_0}^{R_1} r' f_2(r', 0) dr'. \tag{41}$$

Thus, taking into account the definiens for the electrostatic potential, chaacteristic equations (3) and the Cauchy relations, we have the following

THEOREM 3. If the conditions

$$\stackrel{f}{:} \in \mathbb{W}_{2}^{2}(I, \mathbb{H}), \ f_{2} \in L_{2}(I, \mathbb{W}_{2}^{-1}), \ \frac{\partial f_{2}}{\partial t} \in \mathbb{W}_{2}^{1}(I, \mathbb{W}_{2}^{-1}), \ \frac{\partial f_{2}}{\partial t} \mid_{t=0} \in \mathbb{W}_{2}^{-1}(G), \ u_{0} \in \mathbb{W}_{2}^{2}(G) \ \text{and} \ u_{1} \in \mathbb{W}_{2}^{1}(G)$$

concordance conditions (41) hold, then there exists the unique solution of the

.....

problem (1)-(5), provided with the properties (23) and (31).

I wish to express gratitude to assistant professor M.N.Moskal'kov for his advice and his interest in my work.

REFERENCES

[1] V.N.Mel'nik, M.N.Moskal'kov, On coupled electroelastic non-stationary vibrations of radially polarized piezoelectric ceramic cylinder (in Russian), Zhurn. vychisl. matem. i mat. phys., V.28, no.11, pp.1755-1756, 1988.
[2] A.F.Ulitko, On a vibration theory of piezoelectric ceramic bodies (in Russian), Teplovye nap. v elem. konstrukt., vyp.15, pp.90-99, 1975.
[3] A.V.Belokon', I.I.Vorovich, Some mathematical problems in the theory of electroelastic bodies (in Russian), Aktual. problemy mekhaniki deform. sred, Dnepropetrovsk. pp.53-67, 1979.

rovsk, pp.53-67, 1979.
[4] L.P.Bitsadze, Some solvings of electroelastic theory equations (in Russian),

[4] L.P.Bitsadze, Some solvings of electroelastic theory equations (in Russian), Tr. inst. pr.kl. matem., Tbilisi, no.16, pp.720-33, 1985.
[5] O.A.Ladyzhenskaya, Boundary Value Problems of Mathematical Physics (in Russian), Nauka, Moscow, 1973.
[6] J.L.Lions, Some Methods of Solution of Nonlinear Boundary Value Problems (Russ.transl.), Mir, Moscow, 1972.
[7] J.Gawinecki, The Faedo-Galerkin method in thermal stresses theory, Roczn. Polsk. towarz. mat. Ser.l., V.27, no.1, pp.83-107, 1987.
[8] V.P.Mikhailov, Partial Differential Equations (in Russian), Nauka, Moscow, 1983.

[9] G.Fikera, Existence Theorems in Elasticity (Russ.transl.), Mir, Moscow, 1974. [10] S.K.Godunov, Equations of Mathematical Physics (in Russian), Nauka, Moscow,

[11] V.A.Trenogin, Functional Analysis (in Russian), Nauka, Moscow, 1980. [12] V.Novatskii, Electromagnetic Effects in Solid Bodies (Russ.transl.), Mir, Moscow, 1986

15 June 1989

Kiev