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EXISTENCE AND UNIQUENESS THEOREMS OF THE GENERALIZED SOLUTION
FOR A CLASS OF NON-STATIONARY PROBLEM OF COUPLED ELECTROELASTICITY

(Roderick) V.N.Mel’nik

In [1] a non-stationary problem of coupled electroelasticily for cored infini-
te piezoelectric ceramic radially prepolarized cylinders has been considered. The
second-order accuracy difference scheme has been constructed and justified, and
computalional experiments were carried oul to solve This problem.

In the present article the existence and uniqueness theorems for the generali-
zed solution of the problem are proved by the Faedo-Galerkin methed, and the
snoothness of the solution is studied.

1. The mathematical model of the considered class of the problems includes the

aotion equatlions of piezoelastic continuum and the equations of forced electrosta-
lic of dielectrics [2]:

3°u _ 1 3 %8
P2 T gElpe,) = 7 #f, (rot);, R<r<R,, t>0, (1)
L. 8trp)=r¢ (r,t) (2)
r ar r P S
*hich are conneclted by means of characleristic equalions
Ur=C11€r+c12Fe'e11Er’ Te=C125: 259812 D=8 Epte Egte 8, (3)
(the strain-displacement relations (Cauchy’s ones) have the form € =zr. €g=p) and
suipplied by boundary and initial conditions
c.=p,(t) and ¢=V(t), when r=R,: ¢r=p1{t} and ¢=-V(t), when r =R, . (1)
- dul(r,0) _ s
u(r,0)=uy(r), == =u, (r) (5)

*n electrostatic potential is introduced for the description of eleciric field
*:1h the help of formula Er= - g%). Here u means radial displacements; Er and Dr
f7e radial componenls of the electric field intensity vector and electric induclion
‘eclor, respectively; €., are elasticity moduli; e, are piezoelecliric moduli; €

‘% dielectric constant, p is density of piezoelecliric ceramics; f
lass forces; fz

11
. is density of

is density of body’s charge. We suppose that for any EI and 52 The
“33Ci[ion: '

5(Ef+€§)‘c11€$+2C1251€2+522€§ o B30, (6)

that means a non-negalivily of the strain energy.

2. The questions of the solution existence for stalic problems of eleciroelas-

- ofhhave been studied in the articles of L.P.Bitsadze, A.B.Belokon',!l.[.Vorovich

“45'1c?rs (see [3] and [4]). The existence of the coupled non-stalionary electro-
*1C1ly problems’ solution is not investigated yet.

;ﬁwﬁACCOTding to the general approach to the boundary problems of mathemalical

QJT“S (see  [5]), let wus call the pair of functions (u(r,t),e(r,t))e
',

.- J“LQUZWE(G)) (ulr,t) is equal to uo{r]. when t=0),which satisfy the follo-
g Ide-n'[ it 135:

Tl ed,

R
I r(-,8u 3 o 1 #
QTr( PTt gt *o, 91 + Fg-n)drdt—,g rpu (r)n(r,0)dr = J rf ndrdt ¥neW} (Q,), (7)
o] i3
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d a = 1
{ (—cllr E% E% te,re_ H% te, reg 5%)dr—~£ rf, &dr VCeW,(G) for a.e. te(0,7T).
0 0
as the generalized solution of the problem (1)-(5). To simplify the texr, we Sup<
pose the homogeneity of the boundary condition

s (4). The space UéfOTJ
elements of U;[QT].

consists of
of
The aim of this

t=T; also Q= IxG, I=(0,T), G:{RO.RIL
item is to prove the following theorem.

ar
THEOREM 1. If f eWi(1,m), groel, (I,W31),

then the unique generalized solu

which vanish if:

1 1 i
f2|t=06”; (G), u,eW,(G) and UIEthfJ
tion of the problem (1)-(5) with properties
du 3%u 1y 3 1

grel,(I1,H), apzlall. W3)7), el (1,131,

33

exists, too, where H=L2(G],

Perform the proof
and [7]).

1). Let {xlm} and {xzm

and V3! (@)=(W1(6))".

in three steps, using the Faedo-Galerkin's method (see:

} be complete linearly independent systems of funggﬁ9ns
o S,
in the spaces W;(G} and Ué{GJ,

respectively;
roperties of orthonormalization:

these systems satisfy the Folf&%;

(xik.x“}zam, (ank,vxaha

R

; du

ihere {u.v]=I1ruvdr, Vu = .
Ry ar

the expressions for the Galerkin's estimates

kl®
In

m m
u“‘=kZ 81 (£, (1), o= T &= (t)x, (r)
= k=1
he functions gy kt), i=1,2; k=T, m,

3%u® m m K11y _
Grren X M@ V2 )4 o5, h=(f, . 1, ).

can be found from relations:

(07 V2 )=(f5,%,)). 1=TTm

a%' glk(r)it'—‘{]:(ul'xlk)’ glk{0)=a’k‘n‘

m ) po 2522
here %n 2re coefficients of the sums u;(rl= N X, (). These approximatf?_
k=1

inction u (r) in norm W;{GJ. f

and the expressions of ¢®, ¢ and D3
Jtained with the replacement of all u and ¢ by u™ and ¢® in the appropriale
ions (3).

where m—w,

By virtue of the choice of the funct
‘his Is a system of m

ions X5, k=T, m, from relationshipﬁln‘
1itain:

§ = . a3
linear algebraic equations for m unknowns gEiJ we Ca“,f ;

1 m br m B
€217 € (fa'x21)+e12(,§ gli_%i’ale)+ell(,z 81Xy, V%, )b, 1=T m.
11 i=1 i=1

ing (15) for transformation (12),

Wwe gel an ordinary equation system OSEE

nd order with respect to t for the unknown 81» kK=T.m , in the fOllGWlng? o
2

dt? L

ovided by the initial conditions (14) and b
of "electric field" B. Here:

Y symmelric matrices Ofrudgigr-'
E B
F (FI'FZ'- ' a"__.'.:

_ T
31_(g11'312""'g1m] i

o I |
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pd X X X
" [ T - 1k 11 1k 11
3=(by;), L=, m, a, C11{vx1k'vx11]+c12[( 7 VX (Vg7 )]+C22( e E
2 2
m e e X P e.. €

= 11 12 7711 1k 1112
= Ao, T2 Ty T2 ) 22 30, (R0 )0 [0, 72,

A1k gy, )AL, U, )Ty T2y ) Fo=(f,., %5 F o, 2,0 [ (e T2y, 02, )
g Ry N gy g VRag L ] UL v L %50 [ (21, 25,121

X
(szJ ;})]. In analogous to [8] (p.327) way we can show thal The system (16)

has a unlque solution, which belongs to w2{0 T) and satisfies (14), being also such
that af—EWI(O 2 Therefore, by virtue of the theorem supposilions and the relation
(15) we have that —ET—EL (0,T), k=T,m, i.e., the system (12)-(14) has a unique

solution in the interval I and, in view of (11), u® and ¢" are defined uniquely.

dg
2) Let us multiply the equation (12) by function —ali , and the equalion

113), after differentiation with respect to t, by g, . Lel us summarize (wilh res-
sect to 1 from 1 To m) these resultls separalely and Then take a sum of them. Then
#e receive as a result:

d et tI=(f, S ) ( :'¢ =y, (17)
shere
E*(t)= l |2 1 lemlz (CT»EB)2+ %022"53“2+I%€11I£T12.

Integrating rhe equatxon (17) with respect to t, eslimaling the lerms on lhe
right-hand side of the obtained identily by the help of the Cauchy-Bunyakovskili
generalized inequalitly, taking info account the Poincare inequalily and The condi-
tion (16), we have

m
g%(t}lgﬂum{t}"il +l¢(t112 ‘u{ O}]+_[‘lu ()12, dr
2

HEIG]
t ar
1™ 12, dr+lu®1?,  +luPIE+1f, 12 . L (18)
¢! 0", 1 1*H dt 1
0 Hz'lGJ H2{G) H (1,H) Lz(I.\«'2 )

On estimation of the term IE‘:[D)I2 we use the equation (13) when t=0; the (13)
*3s scalar multiplied by function g, and summarized with respectl 1o I from 1 o m:

1E®(0) 12<M,(1€®(0) [2+1€B(0) 1241 £,(0) 1%, )<t lu™(0) 1%  +M,1£,(0)1°
L

5 (@) W3 (6) Wl
-7oducing the notation:
1=t My lu” (O]|2 ' +H1H2|f2{0}|2—1 ["“ml 1 +l“?‘2+
u (c) “ (c; wlie
2 2
. d
242
VN N e -1)
W3 (I, H) gt "L (LK)

L b =
vf_uslng the Gronwall's inequality [10], we get from (18) a following a priori
r=imalt Jon:

m
12Ul 2 um )2, +lgR(£)12, < C(T,M,.H,). bk
at Hzgg; HZ(C) :

3) Due to the the inequality (19) the sequences {u®(t)}, {QE;%Ll} and (p"(t)}

ire b
,“._h:Unded in the spaces L,(I, Ul} L,(I,H) and L,(I,H)NL, (1, U ), respeclively.
fmore, we can choose from Ihese sequences the followlng subSequenCes (dencte

25

it
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v ,
them by {u"}, {g%—} and {9}, respectively), which converge weakly in appropriate’
spaces:

v
u’(t)—z(t) weakly in thf.w;_), gtt‘ _)ngr} weakly in L2U.H] and

- (20).
9V(t)—>y(t) weakly in L,(I,HOL,(I,W)), if v—e . :

Like in (6] and [7] we conclude that the initial condition u[t=0=u0(r1 is fulfil]é

v

due to the convergence of u” to z in Lz[GJ and by virtue of u¥(r,0)—u (r) in

0 ing
L,(G). Let us select the functions El[t]ek’é(O,T], £'(T)=0 and El(t)"'-'cm(f}- We mu1§

liply each relationship from (12) by the appropriate function E , summarize
obtained equalities with respect to I and integrate the result with respecl [o?1
from zero to T. Integrating by parts the obtained result, we transfer the derivat :

ve with respect to time from u®™ onto 7= EE (t)x,,(r). We get an idenlily as
1=1 B
result: ij'
au® 3 n 3 Tg T gym 78
I r(—p.a?_ E% + o7 Elz"'l + _rn)dz-dt - frp e n|t=odr’ = [ rflndr‘dt, that hol?s~‘
Qr Ry QT I :
for any n of the form: ): g (t)x,, (r). (213
1=1 i
We multiply the relationships (13) by functions €, and summarize Tthe :
oblained equations with respect to I: “}f
R1 i 3 o a - Qs R -£ R1 i I.'.Ifl.
,Ff!'(—eurafp—r B% ‘e F€. gE *e,.rtg Fp)Mr = —f; rf gdr Vc:l);lfg'l{t)le{r]. o ('
0 0 = ---; ;
* m
Denote by m, the sel of functiops 7 representable in the form ¥ €'(t)x () 1;
1=1

Q is a notation for the set of functions ¢ such that they have the fcl‘:l

€, (t)x,, (r). According to (20) we can pass in (21) and (22) to the limits by thc ’_‘
12 21 P

By sy

e
above chosen subsequences {u”} and {¢”}, with the fixed nen_ and ZeQ_ . That lea!

i j
to identities (7) and (8) for a pair of the limit functions:{z,y} Vnem , g€
: R

Since 'j“ is dense in WI(QJ and UQ is dense in L,(I,W}(G)) (see [SI, P-.Z'ls ,

m=1

(111, p. 39] and also zer(QTJ and yeL,(I, UI{G}) we have that (7) and (8) are, ful j

filled for the pair of functions {z,y} when Vnc:_wl[Q and CEWIIG} (for almosl"_a!

te(0,T)). Using now (20), equation (1) and equation [ZJ differentiated with reSP":'
o t, we get

SZeL,(1,0), -Z—?EEL (L, W%, Ser(1.031).

Supposing the existence of two solutions (u,9) and (w,B) of the problem

(S), we notice that their difference U=u-w, ¢=p-B salisfy the homogeneous equatljg.
system (1)-(2) with homogeneous initial conditions. Repealing the argumenl of ks
item 2, we gel an a priori estimation (19) for the functions (U,®) when Cﬂo
follows that U=9=0 (the proof of the uniqueness of the solutions is given also
(12], p.22), that complete the proof of the theorem 1.
3.1) Let us study the smoothness of the generalized solution. We showﬁfF'
strengthening of the theorem | condilions we can prove the existence cf
smooth solution than the solution with the properties (9) (they will col

26
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e

virtue of the uniqueness).

THEOREM 2. If
u,&W3(G) and u eW;(G) are fulfilled,

the conditions rlewg(I,HJ,

sroblem (1)-(S) with properties

Ot et I w'itcl
gt (1. W, )

then the unique generalized solution of the

aZ =1
T oy (G

52 a3u 1y° a° -1
pren L (1,80, E?EﬁLZ[I'{wzl ), 3;%eL2[I,U2 i (23)
exists.
ProoF. The equation system
(Fr,S)
,3°p (P,S) GB of, .
atz = I‘ 'a—{rﬂ' ) = = gt » (24)
&f
LR i T (25)
du u
o 0 0
P(0)=u,, p( £)(0)= r EF[F(C11 3r ST _811Er(0]]'
du u
1 0 0 (P,SI] =4 ot
- F(C2 B o "E (0))4f,(r.0), o l5c=5 1 86=0: (26)
shere UJPS}. UéRS) and D:Es, are obtained with the replacements of all u by P

and @ by S in the correspondent relationships,
determined from relationship

8G={R0,R1} and the functicen Er[OJ,

du
[e uste, . r g7 te,,rE_(0)]=rf, (r,0), (27)

1270 11

has, by the theorem 1,
provided with the properties

8P 1y

the unique generalized solulion:

1 g
(P,S)eWl(Q)xL, (1, 1),

as = Q
srel, (1. W, ¥ (28)

Integrating the equaILQns (24) and (25) along an interval (0,t) and taking inlo
dccount the condilions (26) and (27), we obtain the following equalion syslem:
8%w d ( ) [w & %) ( )
4 at2 ) — (e, Sy = +— 1 3%(rnrw.ﬂ )=t
*here the functions w(t) and m(t) are defined by formulas
t t
w(t}=u0+f P(t)dT, n(t)=p(0)+fS(T)dr (29)
- 0 0
¢7d have the properties
Aw_ an - - (w n)
Si=P(t), G2 =s(t), w(0)=u,, (§H(0)=u,, nl,=0 la (30)
=
accordance with (9) and (28)-(30) we have quL @ w ), el (T.8),
v gt2 2
eL(I, (Wl 1 a%n -1y ; ; ;
21wl (W) ), LT, W and &Jer _(I,W.'), i.e., the pair of functions (w,n)
2 BTG gte 2 2

"* the generalized solution of the problem (1)-(5),

salisfying the conditions (9)

g (23] y
The proof of the solutions’ uniqueness is carried oul by The well-known
‘hods (see the analogous statement proof for the theorem | in [12]) and compleles

“* Proof of the theorem 2.
2) Finally we find the conditions,

*olem (1)- -(S), provided with the properties (23)

27

under which the generalized solulion of the

possesses also the properlies:

L =t

e vt

T e

=

T
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5°%u 62¢ 3%u a° g
ar2' gp2' dtar’ HrgrEthf'H]‘ {31}
e consider the auxiliary equation system for unknown (c ,¢). This system is obtal—

ed by differentiation with respect to r of the equatlon (1) of Tthe original
yslem:

®c. | 5 g 1 1 8 2
S =3 wElrgr(re )+ § g2(re )-al 2(ray) b2 +

T

pr

1 & =
r ﬁ{r (ki ¢r+k2¢9 +k3£r ) ] - f2 ’

here T.. Tg and Er are conneclted by the condition:

3 = a s 8 ’
¢, SF(rr9]+clzwenc12 EF(rar]+c22¢r+k2 HF(rEr}+k1E
. - | dr._2 ¥ -
=C117€1178y;» b=c e e /¢, Feap p(rof,)+bf,, ki=c e, -c e,

) 2 F ’ 2
= - = - =— =- = +
27%11%127%12% 1 TC127%11%00 &=k{/q, k,=-K,/q, ky=¢,,+(c, el —c,, 11}/q

he initial boundary conditions have the form:

s = i r —
T loc=Plge=0: ol =05 FE lio™T
here o, and ¢, are The radial stress and the rate of change of c. in the
ime. -
We say that the pair of functions (ar(r.t].¢{r.t))eW£O(QTJxLz(I,V;(G))

c.lr,t) equal to oo(r) when t=0) is a generalized solution
f the problem (33)-(35) if the identity

da 5 R
g r[—prafi g% - aag{rar}%¥ + bo_ g?]drdt - Ilprwln[r,O]dr =
T By

*I r(aw HH b—~n+F ,M)drdt Vneﬁé‘o(QTJ.

R
[ -k ra gﬁ +k ro_ HS +krog ag]dr = I‘rfzqdr
0 L
olds for any CEwl(G) and for almost all te(0,T). Here Uéo(QTJ is the subspace,
he space UJ[Q ), in which the smooth functions, vanishing near r=R; and rﬂ&
epresents a dense set (see [S5],p.24), ?

_ g 3
09—61 H?(rwr}+62¢r+63 HF{rEr]+64Er.

here o =1+ 1k d_=c_,/c 5= -k + e d,=k!/c (the condition féé
1 clzﬁz L T DAl = c, g Kz S i U 8

ollows from (34) in view of (33)).

. o "

"ra 1
Let {x:m} and {zam} be linearly independent functions’ sel in the space “;Q’
atisfying the orthonormalily conditions (10). Let us define the Galerkin’s appré
imations:

m m
e 1 m_ 2
Gf—jglgmj{t)xlj and ¢ ~j§1gmj[th2y
1e unknown functions g » 1=1,2, are defined from the relalionships:
62 m P
il - - ¥ =]
I —d x”)+3(a—f(r0’:).‘?x“J+b(aJ:.Vxll]-—a(crg.van b= . 2, )+(F,.%,)

m m —
Iﬂ""r"kz"‘e)"kaf‘:‘-"v_le)_{f

I dg:' 1 m
2.22!J. 1=T,m , ?TL_lt=0=(¢1'xlj}' gmj(o) =g_j,

28
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where a? are coefficients of the expansion ag(r)= Z a;g (r), which approximales
j=1
for m—® the function o (r) in norm Wl(G];
oy =3, cr[rcm]+5 o+, a~(r£”)+6 EZ.

Oone can show, as it was done in the proof of theorem 1, Thal the system (37) and

dg” .
(38) has an unique solution in the interval 1 and, in addition, -EﬁJeU§[O.T],

gzeL (0,T). It means that we can define uniquely o7 and ¢™ from this system.
m] 1
dg
We multiply the first equation of the system (37) by the functlion —aTl the
second equatltion by g aj’ summarize the resultls with respect to I from 1 to m and

take the sum of them. Using the same methods of an a priori estimalion like in The
proof of the theorem 1, we obtain
8Ty ( t t . t
r(t)2 8 m 2 2 a m 2 m 2
plr F-HT—-IH"'I-E,—!:II'U‘I_}(t]IH-f-gIE:(t]IHdt‘HI+H2 gla?(rcre(tnﬁdrma _cl"lcre(t)lﬂ dt.  (39)
Taking into accounl the condition (34) and equation (3), we can show that
52 (rog) P48 (eg)? < [7, z2(re 47,0 1%, «,B.7,>0, i=1,2.

Therefore we obtain from (39) the a priori estimation for the Calerkin’'s approxima-

tions of, o™

Ir _a%iEl e 52 (re™) (£)13 + IlEm(t)Izdt <C. B4

From the inequality (40) it follows that the sequences {eT(t)}, {Eg(rafl(r)} and
(g "(t)} are bounded in the spaces L(I,H)nL, (I, Vl). L,(I,H) and L,(I,H), respec-
tively. Following the scheme of the theorem 1 proof, we oblain the nexl resull:

1 -1 3 ;
LEMMA. If F eW (I,H), fel, (I,W"), o,eW,(G) and c,€L,(G), then there exists

‘he unique generalized solution of the problem (32)-(35) with the properties

3o ; 8%0

r r 1
=+ € L,(I,H) and e € L(I,W;").
To formulate the existence and uniqueness theorem for generalized solulion of
-he problem (1)-(5), which would have the properties (23) and (31), let us find the

*xplicit form of the concordance condition:

du u
_ - 0 0 _ e
0‘1t=c>_c’“c>|t3(;_[‘:1:l ar 27T ellfr{OJllaﬂ 0

*2r this purpose the value E_ (0) can be found from the relationship (27) afler
~.egraling from R, up to r {R <r4R1], and substituting £ (0) into the latter

“#:ation. In consequence, the concordance condilion belween The initial. boundary
*"dilions and the right-hand side of the equation (2) will take The form
2
e du, (r) e R I
11 ©11%12 p S & | ‘ ;

(e, * ——~)r e e o Juy (r)] R, = N1 { ‘£, (r",0)dr’ . (41)

0

Thus,

takzng into account the definiens for tThe eleclrostatic potential, cha-
~r
“=*eristic equations (3) and the Cauchy relations, we have the following

THEOREM 3. If the conditxons

€93 (T 1 fy 1, 9%, -1 2 1
b)), £ el (T, W50 ), a't—e"’a“-"’E ) w5 loW5 (G), u eWs(G) and u W, (G)
< concordance conditions (41) hold, then there exists the unique solution of the

29

e p e e SO
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problem (1)-(5), provided with the properties (23) and (31).

I wish to express gratitude to assistant professor M.N.Moskal'kov for hig

advice and his interest in my work.
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