
Abstract In this paper, the finite volume method is

developed to analyze coupled dynamic problems of

nonlinear thermoelasticity. The major focus is given to

the description of martensitic phase transformations

essential in the modeling of shape memory alloys

(SMA). Computational experiments are carried out to

study the thermo-mechanical wave interactions in a

SMA rod, and a patch. Both mechanically and ther-

mally induced phase transformations, as well as hys-

teresis effects, in a 1D structure are successfully

simulated with the developed methodology. In the 2D

case, the main focus is given to square-to-rectangular

transformations and examples of martensitic combina-

tions under different mechanical loadings are provided.

1 Introduction

The existing and potential applications of shape

memory alloys (SMA) lead to an increasing interest in

the analysis of these materials by means of both

experimental and theoretical approaches [3]. These

materials have unique properties thanks to their

unique ability to undergo reversible phase transfor-

mations when subjected to appropriate thermal and/or

mechanical loadings. Mathematical modeling tools

play an important role in studying such transformations

and computational experiments, based on mathemati-

cal models, can be carried out to predict the response

of the material under various loadings, different types

of phase transformations, and reorientations. The

development of such tools is far from straightforward

even in the 1D case where the analysis of the dynamics

is quite involved due to a strongly nonlinear pattern of

interactions between mechanical and thermal fields

(e.g., [3, 17] and references therein). For a number of

practical applications a better understanding of the

dynamics of SMA structures with dimensions higher

than one becomes critical. This makes the investigation

more demanding, both theoretically and numerically.

Most results reported so far for the 1D case have

been obtained with the finite element method (FEM) [4,

5, 23]. In addition to the challenges pertinent to coupling

effects, we have to deal also with strong nonlinearities of

the problem at hand. One of the approaches is to em-

ploy a FEM using cubic spline basis functions, in which

case the nonlinear terms can be smoothed out by one of

the available averaging algorithms. As an explicit time

integration is typically employed in such situations, this

results in a very small time step discretization. Seeking

for a more efficient numerical approach, Melnik et al.

[19, 21] used a differential-algebraic methodology to

study the dynamics of martensitic transformations in a

SMA rod. An extension of that approach has been re-

cently developed in [16, 17, 22] where the authors con-

structed a fully conservative, second-order finite-

difference scheme that allowed them to carry out com-

putations on a minimal stencil. However, a direct gen-
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eralization of the scheme to a higher dimensional case

appeared to be difficult.

In this paper, we approach the same problem from

the finite volume method (FVM) point of view. The

method is based on the integral form of the governing

equations, leading to inherently conservative properties

of FVM numerical schemes. The methodology is well

suited for treating complicated, coupled multiphysics

nonlinear problems [2, 6, 7]. It can be relatively easily

generalized to higher dimensional cases. In addition to

its wide-spread popularity in CFD, the method has been

applied previously to linear elastic and thermoelastic

problems [1, 6, 7, 13]. There are several recent results

on the application of FVM to nonlinear thermo-

mechanical problems and nonlinear elastic problems [2,

25]. In this paper, we develop a FVM specifically in the

context of studying martensitic transformations in

SMAs and demonstrate its performance in simulating

the dynamical behavior of SMA rods and patches.

The paper is organized as follows. The mathematical

models for the dynamics of martensitic transformations

in 1D and 2D SMA structures are described in Sect. 2.

Key issues of numerical discretization of these models,

including the FVM and its computational implemen-

tation via the differential-algebraic equations (DAE)

approach, are discussed in Sect. 3. Mechanically and

thermally induced transformations and hysteresis ef-

fects in SMA rods are analyzed in Sect. 4. Section 5 is

devoted to studying nonlinear thermomechanical

behavior and square-to-rectangular transformations in

a SMA patch. Finally, conclusions are given in Sect. 6.

2 Mathematical model for SMA dynamics

We start our consideration from a mathematical model

for the SMA dynamics based on a coupled system of

the three fundamental laws, conservation of mass, lin-

ear momentum, and energy balance, in a way we de-

scribed previously in [17, 22, 26]. Using these laws, the

system that describes coupled thermo-mechanical wave

interactions for the first order martensitic phase

transformations in a 3D SMA structure can be written

as follows [19, 22, 24]:

q
@2ui

@t2
¼ rx � rþ fi; i; j ¼ 1; 2; 3

q
@e

@t
� rT : rvþr � q ¼ g;

ð1Þ

where q is the density of the material, u={ ui}|i=1,2,3 is the

displacement vector, v is the velocity, r ¼ frijg is the

stress tensor, q is the heat flux, e is the internal energy,

f=(f1,f2,f3)T and g are distributed mechanical and

thermal loadings, respectively. Let / be the free energy

function of a thermo-mechanical system described by

Eq. 1, then, the stress and the internal energy function

are connected with / by the following relationships:

r ¼ @/
@g

; e ¼ /� h
@/
@h

; ð2Þ

where h is the temperature, and g the Cauchy–

Lagrangian strain tensor defined as follows:

gij x; tð Þ ¼ @ui x; tð Þ
@xj

þ @uj x; tð Þ
@xi

� �
=2: ð3Þ

In what follows, we employ the Landau–Ginzburg

form of the free energy function for both 1D and 2D

SMA dynamical models [4, 8, 19]. In the 2D case, we

focus our attention on the square-to-rectangular

transformations that can be regarded as a 2D analog of

the realistic cubic-to-tetragonal and tetragonal-to-

orthorhombic transformations [11, 12]. It is known that

for this kind of transformations, the free energy func-

tion / can be constructed by taking advantage of a

Landau free energy function FL. In particular, follow-

ing [11, 12, 15] (see also references therein), we have:

/ ¼ �cvh ln hþ 1

2
a1e2

1 þ
1

2
a3e2

3 þ FL;

FL ¼
1

2
a2 h� h0ð Þe2

2 �
1

4
a4e4

2 þ
1

6
a6e6

2; ð4Þ

where cv is the specific heat constant, h0 is the reference

temperature for the martensite transition, ai,

i=1, 2, 3, 4, 6 are the material-specific coefficients, and

e1, e2, e3 are dilatational, deviatoric, and shear com-

ponents of strain, respectively. The latter are defined as

follows:

e1 ¼ g11 þ g22ð Þ=
ffiffiffi
2
p

; e2 ¼ g11 � g22ð Þ=
ffiffiffi
2
p

;

e3 ¼ g12 þ g21ð Þ=2: ð5Þ

This free energy function / is a convex function of the

chosen order parameters when the temperature is

much higher than h0, in which case only austenite is

stable. When the temperature is much lower than h0, /
becomes non-convex and has two local minima asso-

ciated with two martensite variants, which are the only

stable variants. If the temperature is around h0, the free

energy function has totally three local minima, two of

which are symmetric and associated with the mar-

tensitic phases and the remaining one is associated with

the austenitic phase. In this case both martensite and

austenite phases could co-exist in the system [9, 18]. By

substituting the above free energy function into the

conservation laws for momentum and energy, and

using Fourier’s heat flux definition
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q ¼ �khx ð6Þ

with k>0 being the heat conductivity of the material,

the governing equations for 2D SMA patches can be

written in the following form:

q
@2u1

@t2
¼

ffiffiffi
2
p

2

@

@x
a1e1 þ a2ðh� h0Þe2 � a4e3

2 þ a6e5
2

� �

þ @

@y

1

2
a3e3

� �
þ f1;

q
@2u2

@t2
¼ @

@x

1

2
a3e3

� �
þ

ffiffiffi
2
p

2

@

@y

a1e1 � a2ðh� h0Þe2 þ e4e3
2 � a6e5

2

� �
þ f2;

cv
@h
@t
¼ k

@2h
@x2
þ @

2h
@y2

� �
þ a2he2

@e2

@t
þ g: ð7Þ

As always, we complete system 7 by appropriate initial

and boundary conditions which are problem specific

(see Sects. 4 and 5). As discussed before in [16, 26], the

2D model given by Eq. 7 can be reduced to the Falk

model in the 1D case

q
@2u

@t2
¼ @

@x
k1 h� h1ð Þ@u

@x
� k2

@u

@x

� �3

þk3
@u

@x

� �5
 !

þ F;

cv
@h
@t
¼ k

@2h
@x2
þ k1h

@u

@x

@v

@t
þG; ð8Þ

where k1, k2, k3, cv and k are re-normalized material-

specific constants, h1 is the reference temperature for

1D martensitic transformations, and F and G are dis-

tributed mechanical and thermal loadings.

In the subsequent sections, the above models are

applied to the description of the first order martensitic

transformations. While such transformations are rea-

sonably well documented for the 1D case, only few

results are known for the 2D case. In what follows, we

develop a FVM to simulate the dynamics described by

the models 7 and 8 and apply it in both 1D and 2D

cases.

3 Numerical algorithm

The systems 7 and 8 are analyzed numerically with the

FVM implemented here with the help of the DAE

approach. For the 1D case, the FVM method yields the

same result as the conservative scheme already dis-

cussed in [17]. However, the approach developed here

is generalized in a straightforward manner to a higher

dimensional case and we demonstrate its applicability

by a numerical example in the case of two spatial

dimensions. First, we note that it is convenient to

replace the original model 7 by a system of equivalent

DAE as it was proposed earlier in [19, 21]:

@e1

@t
¼

ffiffiffi
2
p

2

@v1

@x
þ @v2

@y

� �
;

@e2

@t
¼

ffiffiffi
2
p

2

@v1

@x
� @v2

@y

� �
;

q
@v1

@t
¼ @r11

@x
þ @r12

@y
þ fx; q

@v2

@t
¼ @r12

@x
þ @r22

@y
þ fy;

cv
@h
@t
¼ k

@2h
@x2
þ @

2h
@y2

� �
þ a2he2

@e2

@t
þ g;

r11 ¼
ffiffiffi
2
p

2
ða1e1 þ a2 h� h0ð Þe2 � a4e3

2 þ a6e5
2Þ;

r12 ¼ r21 ¼
1

2
a3e3;

r22 ¼
ffiffiffi
2
p

2
ða1e1 � a2 h� h0ð Þe2 þ a4e3

2 � a6e5
2Þ: ð9Þ

This system is solved numerically together with the

compatibility relation written below in terms of strains:

@2e1

@x2
1

þ @
2e1

@x2
2

�
ffiffiffi
8
p @2e3

@x1@x2
� @

2e2

@x2
1

þ @
2e2

@x2
1

¼ 0: ð10Þ

There are eight variables in total that the problem

needs to be solved for in this 2D case and there are

eight equations. The equations for strains, velocities,

and temperature are all differential equations, com-

plemented by stress–strain relationships which are

treated as algebraic.

In what follows, we highlight the key elements of our

numerical procedure based on the FVM implemented

with the help of the DAE approach. First, all equations

in the system 9 are discretized on a staggered grid

represented schematically in Fig. 1. Assuming that the

entire computational domain is a rectangle with an area

of Lx · Ly cm2, we define the spatial integer grid points

(xi,yj) and the spatial flux points ð�xi; �yjÞ as follows:

xi ¼ ihx; i ¼ 0; 1; 2; . . . ;M;

�xi ¼ i� 1

2

� �
hx; i ¼ 1; 2; . . . ;M

yj ¼ jhy; j ¼ 0; 1; 2; . . . ;N;

�yj ¼ j� 1

2

� �
hy; j ¼ 1; 2; . . . ;N ð11Þ

where M and N are the number of grid points such that

M· hx=Lx and N· hy=Ly, respectively. The (i,j)th

control volume for the velocities is ½�xi; �xiþ1� � ½�yj; �yjþ1�;
as sketched by the rectangular tiled mosaic area in

Fig. 1, including the upper right part overlapped with

the hatched area. The variables, defined in this control

volume, that will be differentiated are marked by a top

bar, for instance �v1ði; jÞ: The control volume for the

strains e1 and e2, temperature h, and stresses r11, r12,
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and r22 is given by [xi,xi+1 ] · [yj,yj+1 ], represented by

the rectangular hatched area in Fig. 1. We refer to

these variables, defined in this control volume, without

a top bar, for instance e1(i,j) for e1, etc.

By integrating all the differential equations over

their own control volumes and assuming that all the

unknowns are linear in each single control volume

while being continuous and piecewise linear in the

entire computational domain, the five partial differ-

ential equations are reduced to a system of ordinary

differential equations. The remaining three algebraic

equations of the original system are discretized directly

on the grid. The result is the following system:

de1ði; jÞ
dt

¼ ðIyDx�v1ði; jÞ þ IxDy�v2ði; jÞÞ=
ffiffiffi
2
p

;

de2ði; jÞ
dt

¼ ðIyDx�v1ði; jÞ � IxDy�v2ði; jÞÞ=
ffiffiffi
2
p

;

q
d�v1ði; jÞ

dt
¼ IyDxr11ði� 1; j� 1Þ
þ IxDyr12ði� 1; j� 1Þ þ f1;

q
d�v2ði; jÞ

dt
¼ IyDxr12ði� 1; j� 1Þ
þ IxDyr22ði� 1; j� 1Þ þ f2;

cv
dhði; jÞ

dt
¼ kðDhði; jÞÞ þ

ffiffiffiffiffi
a2
p

2
hði; jÞe2ði; jÞ

de2

dt
þ g;

r11ði; jÞ ¼
ffiffiffi
2
p

2
ða1e1ði; jÞ þ a2ðhði; jÞ � h0Þe2ði; jÞ

� a4

4
g1ði; jÞ þ

a6

6
g2ði; jÞÞ;

r12ði; jÞ ¼ r21ði; jÞ ¼
1

2
ða3e3ði; jÞÞ;

r22ði; jÞ ¼
ffiffiffi
2
p

2
ða1e1ði; jÞ � a2ðhði; jÞ � h0Þe2ði; jÞ

þ a4

4
g1ði; jÞ �

a6

6
g2ði; jÞÞ: ð12Þ

where Dx and Dy are the discrete difference operators

in the x and y directions, respectively, while Ix and Iy

are the discrete interpolation operator in the x and y

directions, and D is the discrete Laplace operator. For

example, for the simplest case of the first order accu-

rate scheme, the operators Dx and Iy could be written

as follows:

Dx�v1ði; jÞ ¼ ð�v1ði; jþ 1Þ � �v1ði; jÞÞ=hx;

Iy�v1ði; jÞ ¼ ð�v1ði; jÞ þ �v1ðiþ 1; jÞÞ=2; ð13Þ

with similar representations for the second order

accurate schemes. Moving to the time discretization

procedure, it is convenient to re-write system 12 in the

following vector–matrix form:

A
dU

dt
þH t;X;Uð Þ ¼ 0 ð14Þ

with matrix A=diag (a1, a2,...,aN) having entries ‘‘one’’

for differential and ‘‘zero’’ for algebraic equations for

stress–strain relationships, and vector-function H de-

fined by the right-hand side parts of Eq. 12. This (stiff)

system is solved with respect to the vector of unknowns

U that have 6 · mx · my+2 · (mx+1) · (my+1) com-

ponents by using the second order backward differen-

tiation formula (BDF) [10]:

A
3

2
Un� 2Un�1þ 1

2
Un�2

� �
þDtH tn;X;U

nð Þ ¼ 0 ð15Þ

where n denotes the current time layer.

This spatio-temporal discretization is applied to the

analysis of phase transformations with the following

modification. In order to improve convergence prop-

erties of the scheme, we employ a relaxation process

connecting two consecutive time layers via a relaxation

factor x as follows:

yði; jÞ ¼ ð1� xÞ � yði; jÞn þ x� yði; jÞnþ1; ð16Þ

where the variable y could be any of the following:

e1(i,j), e2(i,j), v1(i,j), v2(i,j), or h(i,j). Note that in the

general case the relaxation factors need not be the

same for all the variables. In the present paper, all the

numerical results have been obtained using Eq. 16 with

all the relaxation factors set to 0.85.

We note that nonlinear terms in the model are

averaged in the Steklov sense [17], so that for nonlinear

function f(e2) (in particular, for e2
3 and e2

5), averaged in

the interval [e2
n, e2

n+1], we have

g en
2 ; e

nþ1
2

� �
¼ 1

enþ1
2 � en

2

Zenþ1
2

en
2

f ðe2Þde2: ð17Þ

Fig. 1 Staggered grid for space discretization using finite volume
methods
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Applying this idea to e2
3 and e2

5, we have:

g1 i; jð Þ ¼
enþ1

2

� �4�ðen
2Þ

4

enþ1
2 � en

2

¼ 1

4

X3

k¼0

ðenþ1
2 Þ3�kðen

2Þ
k;

g2 i; jð Þ ¼ ðe
nþ1
2 Þ6 � ðen

2Þ
6

enþ1
2 � en

2

¼ 1

6

X5

k¼0

ðenþ1
2 Þ5�kðen

2Þ
k: ð18Þ

where e2
n and e2

n+1 stands for e2(i,j)n and e2(i,j)n+1,

respectively.

Finally, we note that in our FVM implementation

the nonlinear coupling term in the energy balance

equation is regarded as a time-dependent source term.

In the (i,j)th control volume for the discretization of h,

we approximate that term as follows:

Zxiþ1

xi

Zyjþ1

yj

k1he2
@e2

@t

� �
dxdy � hði; jÞe2ði; jÞ

de2ði; jÞ
dt

: ð19Þ

As seen from Eq. 15, we use an implicit time integrator

based on the BDF. At each time step we apply the bi-

conjugate gradient method to solve the resultant sys-

tem of algebraic equations with the Jacobian matrix

updated on each iteration.

4 Dynamics of SMA rods and strips

We first consider a situation where the deformation

of a 2D SMA sample in the x1 direction substantially

exceeds the deformation in the other direction, so

that the deformation in the x2 direction can be ne-

glected and the sample can be treated as a SMA long

strip or simply as a rod. Introducing formally e=¶u/¶x

and v=¶u/¶t, system 8 can be recast in the following

form:

@�

@t
¼ @v

@x
; q

@v

@t
¼ @s

@x
þ F;

s ¼ k1 h� h1ð Þ�� k2�
3 þ k3�

5;

cv
@h
@t
¼ k

@2h
@x2
þ k1h�

@v

@x
þG;

ð20Þ

where � is strain and s is stress.

The numerical procedure described in Sect. 3 is

applied here to the solution of system 20. It is aimed at

the analysis of martensitic transformations in the SMA

rod, including hysteresis effects during the transfor-

mations. Computational experiments reported in this

section were performed for a Au23Cu30Zn47 rod with a

length of L=1 cm and all parameter values found in

[8, 20, 23], in particular:

k1 ¼ 480 g/ms2 cm K; k2 ¼ 6� 106 g/ms2 cm K;

k3 ¼ 4:5� 108 g/ms2 cm K; h1 ¼ 208 K;

q ¼ 11:1 g/cm3; Cv ¼ 3:1274 g/ms2 cm K;

k ¼ 1:9� 10�2 cm g/ms3 K:

The boundary conditions for u and h for all the

numerical experiments reported in this section are

uð0; tÞ ¼ uLðtÞ; uðL; tÞ ¼ uRðtÞ;
@h
@x
ð0; tÞ ¼ hLðtÞ;

@h
@x
ðL; tÞ ¼ hRðtÞ ð21Þ

with given functions ui(t) and hi(t), i=L, R and corre-

sponding conditions for the velocities.

In the numerical experiments reported below, we

used only nine nodes for the velocity discretization

(and eight, excluding boundaries, for the rest of vari-

ables). The time stepsize in all the experiments was set

to s=1 · 10–4. All the simulations were performed for

the time period [0, 24] which spans two periods of the

loading cycle.

4.1 Mechanically induced transformations and

hysteresis

The first numerical experiment deals with the case of

mechanical loading in the low-temperature regime.

The initial conditions for this computational experi-

ment are defined by the following configuration of

martensites ([14, 20, 22]):

hðx; 0Þ ¼ 220;

u0 ¼
0:11869x; 0 � x � 0:25

0:11869ð0:5� xÞ; 0:25 � x � 0:75

0:11869ðx� 1Þ; 0:75 � x � 1

8><
>: ; v0 ¼ u1 ¼ 0

ð22Þ

with the time varying distributed mechanical loading

defined as

F ¼ 7000 sin3 pt

2

� �
g=ðms2 cm2Þ; G ¼ 0: ð23Þ

Under the given distributed mechanical loading, the

SMA rod is expected to switch between different

combinations of the martensite variants, and a hyster-

esis loop must be observed similar to those reported

for ferroelastic materials at low temperature. In Fig. 2

we present simulation results for this case. The

mechanical hysteresis is obtained by plotting dis-

placement u as a function of F at x=3/8 cm (the upper

right plot). The time-varying mechanical loading for
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this case is plotted in the upper left plot. The simulated

strain and the displacement distribution are also plot-

ted as functions of time and space (lower plots). The

combination of martensitic variants is changing with

time-dependent mechanical loading and no stable

austenite is observed at this low temperature.

Our next goal is to analyze the behavior of the same

SMA rod under a medium temperature where both

martensite and austenite phases may co-exist. The

following initial conditions will allow us to start from

the austenitic phase:

hðx; 0Þ ¼ 250; u0 ¼ 0; v0 ¼ u1 ¼ 0: ð24Þ

The boundary conditions as well as mechanical and

thermal loadings in this case are kept identical to the

previous experiment. In this case, the free energy

function has three minima that correspond to two

martensites and one austenite. The numerical results

for this case are presented in the left column of Fig. 3.

It is observed that when the applied loading exceeds

a certain value, the austenite is transformed to a

combination of martensitic variants. The reverse

transformation is taken place when the loading chan-

ges its sign. In contrast to the results presented in

Fig. 2, we observe that the wide hysteresis loop, typical

for the low temperature case, disappears.

If we increase the initial temperature further to

h(x,0)=300, the free energy function becomes convex

and has only one minimum associated with the aus-

tenite phase. During the entire loading cycle, no

martensite is expected under these thermal condi-

tions. The dynamics of the SMA rod in this case

exhibits nonlinear thermomechanical behavior with-

out phase transformations. This is confirmed by the

numerical results presented in the right column of

Fig. 3.

4.2 Thermally induced phase transformations and

hysteresis

Thermally induced martensitic phase transformations

and thermal hysteresis in SMA rods can be analyzed
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Fig. 2 Mechanical induced phase transformation and mechanical hysteresis in SMA rod
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with the same model under time-dependent thermal

loading conditions. Indeed, let us choose the initial

conditions as follows:

hðx; 0Þ ¼ 230;

u0 ¼
0:11869x; 0 � x � 0:5

0:11869ð1� xÞ; 0 � x � 0:5

�
;

v0 ¼ u1 ¼ 0

The boundary conditions remain the same as in the

previous computational experiment, but the loadings

conditions now become:

G ¼ 600 sin
pt

6

� �
g=ðms3 cmÞ; F ¼ 500 g=ðms2 cm2Þ:

Numerical results for this case are presented in

Fig. 4. Analyzing strain and displacement distribu-
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tions, we observe that the combination of martensitic

variants is transformed into the austenite phase when

the temperature exceeds a certain value. The reverse

process is taken place when the temperature de-

creases, passing the critical threshold. Note that due

to the presence of thermal hysteresis, the critical

temperature value for the martensite-to-austenite

transformation is different from that of the austenite-

to-martensite transformation. A schematic represen-

tation of the observed thermal hysteresis is given in

the lower right part of Fig. 4 where we presented the

temperature at x=3/8 as a function of strain at the

same spatial point.

5 Dynamics of SMA patches

The situation becomes more involved for 2D struc-

tures. Experimental, let alone numerical, results for

this situation are scarce [26]. In order to apply the

FVM to the 2D model discussed in Sect. 2, we chose

the same material as before, assuming that a2=k1,

a3=k2, a4=k3, a1=k1, a3=2k1 and therefore effectively

linking parameters in models 7 and 8.

5.1 Nonlinear thermomechanical behavior

The first numerical experiment on a SMA patch is

aimed at the analysis of the dynamical thermo-

mechanical response of the patch to a varying distrib-

uted mechanical loading, too small to induce any phase

transformations. The initial temperature of the patch is

set to 250� while all other variables are set initially to

zero. Conditions at the boundaries are

@h
@x
¼ 0;

@u2

@x
¼ 0;

u1 ¼ 0; on left and right boundaries;

@h
@y
¼ 0;

@u1

@y
¼ 0;

u2 ¼ 0; on top and bottom boundaries: ð25Þ

Similarly, the mechanical boundary conditions are en-

forced in terms of velocity components. The loading

conditions in this experiment are
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f1 ¼ 200 sinðpt=6Þg=ðms2 cm2Þ;
f2 ¼ 200 sinðpt=40Þg=ðms2 cm2Þ:

The time span for this simulation, [0,24], covers two

periods of loading. The time stepsize is set to 1· 10–4.

We take 15 nodes used in each direction. The dimen-

sions of the SMA patch are taken as 1 · 0.4 cm2.

The variations in the displacements u1, u2, deviatoric

strain e2, and the temperature h along the line y=0.2 cm

(the central horizontal line) as functions of time are

presented in Fig. 5. These simulations show that both

thermal and mechanical fields are driven periodically

by the distributed mechanical loading. Under such a

small loading, the SMA patch behaves just like a con-

ventional thermoelastic material. Observed oscillations

are due to nonlinear thermomechanical coupling, but

no phase transformations are observed in this case.

5.2 Phase transformations in SMA patches

Our aim in this section is to analyze spatio-temporal

patterns of martensitic transformations in a 2D SMA

patch. The SMA patch, used in this computational

experiment, is made of the same material as before.

The patch is assumed square in shape with dimensions

1 · 1 cm2. The initial temperature distribution is set to

h0=240�, and all other variables are initially set to zero.

The boundary conditions are homogeneous and

@h
@n
¼ 0; u2 ¼ u1 ¼ 0; on all the four boundaries;

ð26Þ

where n is the unit normal vector. We apply the fol-

lowing loading to the sample, specified below for one

period:

f1 ¼ f2 ¼ 6000

sinðpt=3Þ; 0 � t � 4;
0; 4 � t � 6;

sinðpðt � 2ÞÞ=3Þ; 6 � t � 10;
0; 10 � t � 12:

8>><
>>:

ð27Þ

The numerical results for this case are presented in

Fig. 6 where the values of ‘‘y’’ are taken in the middle

of the sample. The spatio-temporal plot of the order

parameter e2 demonstrates a periodicity pattern in the

observed phase transformations due to periodicity of
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the loading. It is observed also that the temperature

oscillates synchronously with the mechanical field

variables due to the thermo-mechanical coupling.

As we mentioned earlier, there are two martensitic

variants in the square-to-rectangular transformations.

The following analysis proves to be useful in validating

the results of computational experiments. Assuming

the temperature difference dh=h–h0, one can easily

calculate the deviatoric strain that corresponds to the

austenite and martensite variants by minimizing the

Landau free energy functional. In particular from the

condition ¶Fl/¶e2=0 we get:

e2 ¼ 0; e2
2 ¼

a4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4 � 4a2dha6

q
2a6

:

The value e2=0 corresponds to the austenitic phase. If

we denote a4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4 � 4a2dha6

q� �
=2a6 by em, then

e2þ ¼ þ
ffiffiffiffiffiffi
em
p

or e2� ¼ �
ffiffiffiffiffiffi
em
p

are the strains that

correspond to the two martensite variants. We call

them martensite plus and martensite minus, respec-

tively. If we take dh=42�, then for the material con-

sidered here we can estimate that e2+=0.12 and

e2-=0.12. This provides a fairly good estimate for the

1D case. However, as was pointed out in [12, 15], for

the 2D case such an estimate can be adequate only in

homogenous cases. Although the quality of this esti-

mate is dependent on the boundary conditions for a

specific problem, this estimate proves to be a reason-

able initial approximation to the deviatoric strain.

In Fig. 7 we present two snapshots (at t=2 and t=8)

of the spatial distributions of e2 and h. It is observed

that when the mechanical loading achieves its (posi-

tive) maximum, the SMA patch is divided into two sub-

domains determined by the deviatoric strain, as seen

from the e2 plot at t=2. In the upper-left triangular-

shape area, the simulated deviatoric strain corresponds

to the martensite plus, while on the opposite side, the

deviatoric strain corresponds to the martensite minus.

At t=8, when the mechanical loading changes its sign to
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the opposite, the martensitic transformation is ob-

served again, but now in the reverse direction. The

second period of loading confirms these observations.

6 Conclusion

In this paper, we developed a finite volume method-

ology for the analysis of nonlinear coupled thermo-

mechanical problems, focusing on the dynamics of

SMA rods and patches. Both mechanically and ther-

mally induced phase transformations, as well as hys-

teresis effects, in 1D structures are successfully

simulated. While these results can be obtained with the

recently developed conservative difference schemes,

their generalization to higher dimensional cases is not

trivial. In this paper, we also highlighted the applica-

tion of the developed FVM to the 2D problems

focusing on square-to-rectangular transformations in

SMA materials demonstrating practical capabilities of

the developed methodology.
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